5th EDITION **PHYSON** for SCIENTISTS and ENGINEERS

douglas GIANCOLI

5th EDITION **DHISTS and ENGINEERS**

DOUGLAS GIANCOLI

Pearson

Editorial Director: Jeanne Zalesky Content Development: Margy Kuntz, Andrea Giancoli Project Managers: Cynthia Rae Abbott, Elisa Mandelbaum, Francesca Monaco, Karen Misler, Rebecca Dunn Production Vendor: CodeMantra Interior Composition: Preparé Italia, Battipaglia (SA), Italy Copyeditor: Joanna Dinesmore Proofreaders: Andrea Giancoli, Carol Reitz, and Clare Romeo Art House: Lachina Creative Design Managers: Mark Ong, Derek Bacchus, Emily Friel, SPi Global Rights & Permissions Manager: Ben Ferrini SPi Global Photo Researcher: Eric Schrader and Mary Teresa Giancoli Manufacturing Buyer: Stacey Wienberger

Copyright © 2020, 2008, 2000, 1989, 1984 by Douglas C. Giancoli. Published by Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Photo credits appear on page A-77, which constitutes a continuation of this copyright page.

PEARSON, ALWAYS LEARNING and MasteringTM Physics are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Giancoli, Douglas C., author.

Title: Physics for scientists & engineers with modern physics/Douglas C. Giancoli.

Other titles: Physics for scientists and engineers with modern physics

Description: Fifth edition. | Upper Saddle River, N.J. : Pearson Education, Inc., [2019] | Includes bibliographical references and index. Contents: Introduction, measurement, estimating – Describing motion: kinematics in one dimension – Kinematics in two or three dimensions; vectors – Dynamics: Newton's laws of motion – Using Newton's laws: friction, circular motion, drag forces – Gravitation and Newton's synthesis – Work and energy – Conservation of energy – Linear momentum – Rotational motion – Angular momentum; general rotation – Static equilibrium; elasticity and fracture – Fluids – Oscillations – Wave motion – Sound – Temperature, thermal expansion, and the ideal gas law – Kinetic theory of gases – Heat and the first law of thermodynamics – Second law of thermodynamics – Electric charge and electric field – Gauss's law – Electric potential – Capacitance, dielectrics, electric energy storage – Electric currents and resistance – DC circuits – Magnetism – Sources of magnetic field – Electromagnetic induction and Faraday's law – Inductance, electromagnetic oscillations, and AC circuits – Maxwell's equations and electromagnetic waves – Light: reflection and refraction – Lenses and optical instruments – The wave nature of light: interference and polarization – Diffraction – The special theory of relativity – Early quantum theory and models of the atom – Quantum mechanics – Quantum mechanics of atoms – Molecules and solids – Nuclear physics and radioactivity – Nuclear energy; effects and uses of radiation – Elementary particles – Astrophysics and cosmology.
Identifiers: LCCN 2019015435 | ISBN 9780134378053 (v.1) | ISBN 0134378059 (v.1)

Subjects: LCSH: Physics--Textbooks.

Classification: LCC QC21.3 .G539 2019 | DDC 530--dc23 LC record available at https://lccn.loc.gov/2019015435

ISBN 10: 0-321-99227-X; ISBN 13: 978-0-32-199227-7 (Student Edition) ISBN 10: 0-134-37806-7; ISBN 13: 978-13-437806-0 (Classic Student Edition) ISBN 10: 0-134-37808-3; ISBN 13: 978-0-13-437808-4 (Looseleaf Edition)

Pearson

Contents

Applications List	xii
Preface	xvi
To Students	XX
Use of Color	xxi

1 INTRODUCTION, MEASUREMENT, ESTIMATING

1

20

1-1	How Science Works	2
1 - 2	Models, Theories, and Laws	3
1-3	Measurement and Uncertainty;	
	Significant Figures	3
1 - 4	Units, Standards, and the SI System	6
1 - 5	Converting Units	9
1 - 6	Order of Magnitude: Rapid Estimating	11
*1-7	Dimensions and Dimensional Analysis	14
	Questions, MisConceptions, Problems 15-19	

2 Describing Motion: Kinematics in One Dimension

2-1	Reference Frames and Displacement	21
2 - 2	Average Velocity	22
2-3	Instantaneous Velocity	24
2 - 4	Acceleration	27
2 - 5	Motion at Constant Acceleration	30
2-6	Solving Problems	33
2 - 7	Freely Falling Objects	37
*2-8	Variable Acceleration; Integral Calculus	43
	Questions, MisConceptions, Problems 45-53	

Kinematics in Two or Three Dimensions; Vectors 54

		-
3-1	Vectors and Scalars	55
3-2	Addition of Vectors-Graphical Methods	55
3-3	Subtraction of Vectors, and	
	Multiplication of a Vector by a Scalar	57
3-4	Adding Vectors by Components	58
3-5	Unit Vectors	62
3-6	Vector Kinematics	62
3-7	Projectile Motion	65
3-8	Solving Problems Involving Projectile	
	Motion	67
3–9	Relative Velocity	73
	Questions, MisConceptions, Problems 76-84	
4	Dynamics: Newton's Laws of Motion	85
4 1	Forma	06

4-1	Force	86
4-2	Newton's First Law of Motion	86
4-3	Mass	88
4-4	Newton's Second Law of Motion	88
4-5	Newton's Third Law of Motion	91
4-6	Weight—the Force of Gravity;	
	and the Normal Force	94
4-7	Solving Problems with Newton's Laws:	
	Free-Body Diagrams	97
4-8	Problem Solving—A General Approach	104
	Questions, MisConceptions, Problems 105-115	5

5 Using Newton's Laws: Friction, Circular Motion, Drag Forces 116

Using Newton's Laws with Friction 5 - 1117 5 - 2Uniform Circular Motion-Kinematics 123 5 - 3Dynamics of Uniform Circular Motion 126 Highway Curves: Banked and Unbanked 130 5 - 45-5 Nonuniform Circular Motion 133 *5-6 Velocity-Dependent Forces: Drag and Terminal Velocity 134 Questions, MisConceptions, Problems 136-144

6 Gravitation and Newton's Synthesis

145

172

6-1	Newton's Law of Universal Gravitation	146
6-2	Vector Form of Newton's Law of	
	Universal Gravitation	149
6-3	Gravity Near the Earth's Surface	149
6-4	Satellites and "Weightlessness"	152
6-5	Planets, Kepler's Laws, and	
	Newton's Synthesis	155
6-6	Moon Rises an Hour Later Each Day	161
6-7	Types of Forces in Nature	161
*6-8	Gravitational Field	162
*6-9	Principle of Equivalence;	
	Curvature of Space; Black Holes	163
	Questions, MisConceptions, Problems 165–171	

WORK AND ENERGY

7-1	Work Done by a Constant Force		173
7-2	Scalar Product of Two Vectors		176
7-3	Work Done by a Varying Force		177
7–4	Kinetic Energy and the Work-Energy Principle		181
	Questions, MisConceptions, Problems	186–193	

Conservation of Energy 194

8-1	Conservative and Nonconservative Forces	195
8-2	Potential Energy	197
8-3	Mechanical Energy and Its Conservation	200
8-4	Problem Solving Using Conservation of Mechanical Energy	201
8-5	The Law of Conservation of Energy	207
8-6	Energy Conservation with Dissipative Forces: Solving Problems	208
8-7	Gravitational Potential Energy and Escape Velocity	210
8-8	Power	213
8-9	Potential Energy Diagrams;	015
	Stable and Unstable Equilibrium	215
*8-10	Gravitational Assist (Slingshot)	216
	Questions, MisConceptions, Problems 218-226	

9 Linear Momentum

227

9–1	Momentum and Its Relation to Force	228
9-2	Conservation of Momentum	230
9–3	Collisions and Impulse	234
9-4	Conservation of Energy and Momentum in Collisions	235
9–5	Elastic Collisions in One Dimension	236
9-6	Inelastic Collisions	239
9–7	Collisions in 2 or 3 Dimensions	241
9-8	Center of Mass (CM)	244
9–9	Center of Mass and Translational Motion	248
9-10	Systems of Variable Mass: Rocket Propulsion	251

Questions, MisConceptions, Problems 254–263

ROTATIONAL MOTION 264 10–1 Angular Quantities 265 10–2 Vector Nature of Angular Quantities 270 10–3 Constant Angular Acceleration 270 10-4 Torque 271 10-5 Rotational Dynamics; Torque and 274 Rotational Inertia 10–6 Solving Problems in Rotational Dynamics 276 10-7 Determining Moments of Inertia 279 10-8 Rotational Kinetic Energy 281 10–9 Rotation plus Translational Motion; Rolling 283 *10-10 Why Does a Rolling Sphere Slow Down? 289 Questions, MisConceptions, Problems 291-301

Angular Momentum;
General Rotation302

11_1	Angular Momentum—Objects	
11 1	Rotating About a Fixed Axis	303
11-2	Vector Cross Product; Torque as a Vector	307
11-3	Angular Momentum of a Particle	309
11-4	Angular Momentum and Torque for a System of Particles; General Motion	310
11–5	Angular Momentum and Torque for a Rigid Object	312
11-6	Conservation of Angular Momentum	315
*11-7	The Spinning Top and Gyroscope	317
11-8	Rotating Frames of Reference; Inertial Forces	318
*11–9	The Coriolis Effect	319
	Questions, MisConceptions, Problems 322-330	

12 STATIC EQUILIBRIUM; ELASTICITY AND FRACTURE 331 14 OSCILLATIONS

12-1	The Conditions for Equilibrium		332
12-2	Solving Statics Problems		334
*12-3	Applications to Muscles and Joints	5	339
12-4	Stability and Balance		341
12-5	Elasticity; Stress and Strain		342
12-6	Fracture		345
*12-7	Trusses and Bridges		347
*12-8	Arches and Domes		350
	Ouestions , MisConceptions, Problems	353-364	

13 FLUIDS

13–1	Phases of Matter	366
13-2	Density and Specific Gravity	366
13-3	Pressure in Fluids	367
13-4	Atmospheric Pressure and	
	Gauge Pressure	371
13-5	Pascal's Principle	371
13-6	Measurement of Pressure;	
	Gauges and the Barometer	372
13-7	Buoyancy and Archimedes' Principle	374
13-8	Fluids in Motion; Flow Rate and	
	the Equation of Continuity	378
13–9	Bernoulli's Equation	380
13 - 10	Applications of Bernoulli's Principle:	
	Torricelli, Airplanes, Baseballs,	
	Blood Flow	382
13–11	Viscosity	385
*13-12	Flow in Tubes: Poiseuille's Equation,	
	Blood Flow	385
*13–13	Surface Tension and Capillarity	386
*13–14	Pumps, and the Heart	388
	Questions, MisConceptions, Problems 390-398	

14-1	Oscillations of a Spring		400
14 - 2	Simple Harmonic Motion		402
14–3	Energy in the Simple Harmonic Oscillator		408
14–4	Simple Harmonic Motion Related to Uniform Circular Motion		410
14-5	The Simple Pendulum		411
*14-6	The Physical Pendulum and		
	the Torsion Pendulum		412
14 - 7	Damped Harmonic Motion		414
14-8	Forced Oscillations; Resonance		417
	Questions, MisConceptions, Problems	420-427	

WAVE MOTION

15_1	Characteristics of Wave Motion		429	
15 1	Transa of Wower			
13-2	2 Types of waves:			
	Iransverse and Longitudinal		431	
15 - 3	Energy Transported by Waves		435	
15 - 4	Mathematical Representation of a			
	Traveling Wave		437	
*15-5	The Wave Equation		440	
15-6	The Principle of Superposition		441	
15-7	Reflection and Transmission		443	
15-8	Interference		444	
15-9	Standing Waves; Resonance		446	
15-10	Refraction		449	
15-11	Diffraction		450	
	Questions, MisConceptions, Problems	452-459		

16 Sound

16-1	Characteristics of Sound	461
16-2	Mathematical Representation	
	of Longitudinal Waves	462
16-3	Intensity of Sound: Decibels	464
16-4	Sources of Sound:	
	Vibrating Strings and Air Columns	467
*16-5	5 Quality of Sound, and Noise;	
	Superposition	472
16-6	Interference of Sound Waves; Beats	473
16-7	Doppler Effect	476
*16-8	Shock Waves and the Sonic Boom	480
*16-9	Applications: Sonar, Ultrasound,	
	and Medical Imaging	481
	Questions, MisConceptions, Problems 484-491	

Temperature, Thermal Expansion, and the Ideal Gas Law

492

538

		1.5.	_
17-1	Atomic Theory of Matter)3
17 - 2	17–2 Temperature and Thermometers)5
17-3	Thermal Equilibrium and the		
	Zeroth Law of Thermodynamics	49)7
17 - 4	Thermal Expansion	49)7
*17-5	Thermal Stresses	50)1
17-6	The Gas Laws and		
	Absolute Temperature	50)2
17 - 7	The Ideal Gas Law	50)3
17 - 8	Problem Solving with the		
	Ideal Gas Law	50)4
17–9	Ideal Gas Law in Terms of Molecu	les:	
	Avogadro's Number	50)6
*17-10	Ideal Gas Temperature Scale –		
	a Standard	50)7
	Questions, MisConceptions, Problems	509-515	

18 Kinetic Theory of Gases 516

18-1	The Ideal Gas Law and the Molecular Interpretation of Temperature	
18-2	3–2 Distribution of Molecular Speeds	
18-3	-3 Real Gases and Changes of Phase	
18 - 4	Vapor Pressure and Humidity	
18-5	Temperature Decrease of Boiling Water	
	with Altitude	526
18-6	Van der Waals Equation of State	527
18 - 7	Mean Free Path	528
18 - 8	Diffusion	530
	Questions, MisConceptions, Problems 532-537	,

19 Heat and the First Law of Thermodynamics

19–1	Heat as Energy Transfer	539
19-2	Internal Energy	540
19–3	Specific Heat	541
19–4	Calorimetry–Solving Problems	542
19-5	Latent Heat	545
19–6	The First Law of Thermodynamics	549
19–7	Thermodynamic Processes and the First Law	551
19–8	Molar Specific Heats for Gases, and the Equipartition of Energy	556
19–9	Adiabatic Expansion of a Gas	559
19–10	Heat Transfer: Conduction, Convection, Radiation	560
	Questions, MisConceptions, Problems 568-575	

20 Second Law of Thermodynamics

20 - 1	The Second Law of	
	Thermodynamics-Introduction	577
20-2	Heat Engines	578
20 - 3	The Carnot Engine;	
	Reversible and Irreversible Processes	580
20 - 4	Refrigerators, Air Conditioners, and	
	Heat Pumps	584
20-5	Entropy	587
20-6	Entropy and the Second Law of	
	Thermodynamics	590
20 - 7	Order to Disorder	593
20 - 8	Unavailability of Energy; Heat Death	594
20 - 9	Statistical Interpretation of Entropy	
	and the Second Law	595
*20-10	Thermodynamic Temperature;	
	Third Law of Thermodynamics	597
20-11	Thermal Pollution, Global Warming,	
	and Energy Resources	598

576

Questions, MisConceptions, Problems 601–608

21 Electric Charge and Electric Field

	LLECINC CHARGE AND	
21	Electric Field	609
21-1	Static Electricity; Electric Charge and	
	Its Conservation	610
21 - 2	Electric Charge in the Atom	611
21-3	Insulators and Conductors	611
21-4	Induced Charge; the Electroscope	612
21 - 5	Coulomb's Law	613
21-6	The Electric Field	618
21-7	Electric Field Calculations for	
	Continuous Charge Distributions	622
21-8	Field Lines	626
21-9	Electric Fields and Conductors	627
21 - 10	Motion of a Charged Particle in	
	an Electric Field	628
21 - 11	Electric Dipoles	629
*21-12	Electric Forces in Molecular Biology:	
	DNA Structure and Replication	631
	Questions, MisConceptions, Problems 634-642	2

GAUSS'S LAW

22 - 1	Electric Flux	644
22 - 2	Gauss's Law	645
22-3	Applications of Gauss's Law	647
*22-4	Experimental Basis of Gauss's and	
	Coulomb's Laws	652
	Questions, MisConceptions, Problems 653–659	

23 Electric Potential

23-1	Electric Potential Energy and	
	Potential Difference	661
23 - 2	Relation between Electric Potential	
	and Electric Field	664
23-3	Electric Potential Due to Point Charges	666
23 - 4	Potential Due to Any Charge Distribution	669
23 - 5	Equipotential Lines and Surfaces	670
23-6	Potential Due to Electric Dipole;	
	Dipole Moment	671
23 - 7	$\vec{\mathbf{E}}$ Determined from V	672
23-8	Electrostatic Potential Energy; the	
	Electron Volt	674
23-9	Digital; Binary Numbers; Signal Voltage	676
*23-10	TV and Computer Monitors	679
*23-11	Electrocardiogram (ECG or EKG)	682
	Questions, MisConceptions, Problems 684–691	

4 CAPACITANCE, DIELECTRICS, ELECTRIC ENERGY STORAGE

24-1	Capacitors	692
24 - 2	Determination of Capacitance	694
24-3	Capacitors in Series and Parallel	698
24 - 4	Storage of Electric Energy	700
24-5	Dielectrics	703
*24-6	Molecular Description of Dielectrics	706
	Questions, MisConceptions, Problems 708–716	

25 ELECTRIC CURRENT AND RESISTANCE

Œ	717

25-1	The Electric Battery	718
25 - 2	Electric Current	720
25 - 3	Ohm's Law: Resistance and Resistors	722
25 - 4	Resistivity	724
25 - 5	Electric Power	726
25 - 6	Power in Household Circuits	729
25 - 7	Alternating Current	730
25 - 8	Microscopic View of Electric Current	732
*25-9	Superconductivity	735
*25-10	Electrical Conduction in the Human	
	Nervous System	736
	Questions, MisConceptions, Problems 739–746	

DC CIRCUITS

26-1	EMF and Terminal Voltage	748
26 - 2	Resistors in Series and in Parallel	749
26-3	Kirchhoff's Rules	754
26-4	EMFs in Series and in Parallel; Charging a Battery	757
26-5	<i>RC</i> Circuits – Resistor and Capacitor in Series	759
26-6	Electric Hazards and Safety	764
26-7	Ammeters and Voltmeters—Measurement Affects Quantity Measured Questions, MisConceptions, Problems 771–781	767

27 Magnetism 782

27-1	Magnets and Magnetic Fields	782
27-2	Electric Currents Produce Magnetic Fields	785
27-3	Force on an Electric Current in a Magnetic Field; Definition of \vec{B}	786
27-4	Force on an Electric Charge Moving in a Magnetic Field	788
27-5	Torque on a Current Loop; Magnetic Dipole Moment	793
27-6	Applications: Motors, Loudspeakers, Galvanometers	795
27-7	Discovery and Properties of the Electron	797
27-8	The Hall Effect	799
27-9	Mass Spectrometer	800
	Ouestions, MisConceptions, Problems 802–810	

28 Sources of Magnetic Field 811

28-1	Magnetic Field Due to a Straight Wire	812
28 - 2	Force between Two Parallel Wires	813
28-3	Definitions of the Ampere and the	
	Coulomb	814
28 - 4	Ampère's Law	815
28-5	Magnetic Field of a Solenoid and	
	a Toroid	819
28-6	Biot-Savart Law	821
28 - 7	Magnetic Field Due to a Single	
	Moving Charge	824
28-8	Magnetic Materials-Ferromagnetism	824
28-9	Electromagnets and	
	Solenoids—Applications	826
28 - 10	Magnetic Fields in Magnetic	
	Materials; Hysteresis	827
*28-11	Paramagnetism and Diamagnetism	828

Questions, MisConceptions, Problems 830-837

782 29 Electromagnetic Induction and Faraday's Law 838

29-1	Induced EMF	839
29-2	Faraday's Law of Induction; Lenz's Law	840
29-3	EMF Induced in a Moving Conductor	845
29-4	Electric Generators	846
29-5	Back EMF and Counter Torque;	
	Eddy Currents	848
29-6	Transformers and Transmission of Power	851
29-7	A Changing Magnetic Flux Produces an Electric Field	854
*29-8	Information Storage: Magnetic and Semiconductor	856
*29–9	Applications of Induction: Microphone, Seismograph, GFCI Questions, MisConceptions, Problems 860–868	858

30 Inductance, Electromagnetic Oscillations, and AC Circuits 869

30-1	Mutual Inductance	870
30-2	Self-Inductance; Inductors	872
30-3	Energy Stored in a Magnetic Field	874
30-4	LR Circuits	875
30-5	<i>LC</i> Circuits and Electromagnetic Oscillations	877
30-6	<i>LC</i> Oscillations with Resistance (<i>LRC</i> Circuit)	880
30-7	AC Circuits and Reactance	881
30-8	LRC Series AC Circuit; Phasor Diagrams	885
30-9	Resonance in AC Circuits	887
30-10	Impedance Matching	888
*30-11	Three-Phase AC	889
	Questions, MisConceptions, Problems 890–897	

31 Maxwell's Equations and Electromagnetic Waves 898

31–1	Changing Electric Fields Produce Magnetic Fields; Displacement	
	Current	899
31-2	Gauss's Law for Magnetism	902
31–3	Maxwell's Equations	903
31-4	Production of Electromagnetic Waves	903
31-5	Electromagnetic Waves, and Their Speed, Derived from Maxwell's Equations	905
31–6	Light as an Electromagnetic Wave and the Electromagnetic Spectrum	909
31-7	Measuring the Speed of Light	912
31-8	Energy in EM Waves; the Poynting Vector	913
31–9	Radiation Pressure	915
31-10	Radio and Television; Wireless Communication	917
	Questions, MisConceptions, Problems 921–925	

.

32 Light: Reflection and Refraction

32-1	The Ray Model of Light	927
32-2	Reflection; Image Formation by a Plane Mirror	927
32-3	Formation of Images by Spherical Mirrors	931
32-4	Seeing Yourself in a Magnifying Mirror (Concave)	936
32-5	Convex (Rearview) Mirrors	938
32-6	Index of Refraction	939
32-7	Refraction: Snell's Law	939
32-8	The Visible Spectrum and Dispersion	941
32-9	Total Internal Reflection; Fiber Optics	943
*32-10	Refraction at a Spherical Surface	946
	Questions, MisConceptions, Problems 949–957	

926

958

33 Lenses and Optical Instruments

33-1	Thin Lenses; Ray Tracing and	
	Focal Length	959
33-2	The Thin Lens Equation	962
33-3	Combinations of Lenses	966
33-4	Lensmaker's Equation	968
33-5	Cameras: Film and Digital	970
33-6	The Human Eye; Corrective Lenses	975
33-7	Magnifying Glass	979
33-8	Telescopes	980
33-9	Compound Microscope	983
33-10	Aberrations of Lenses and Mirrors	984
	Questions, MisConceptions, Problems 986–994	

THE WAVE NATURE OF LIGHT:

J 4	POLARIZATION	995
34–1	Waves vs. Particles; Huygens' Principle and Diffraction	996
34-2	Huygens' Principle and the Law of Refraction; Mirages	997
34-3	Interference–Young's Double-Slit Experiment	998
*34–4	Intensity in the Double-Slit Interference Pattern	1002
34 - 5	Interference in Thin Films	1004
34-6	Michelson Interferometer	1010
34-7	Polarization	1010
*34-8	Liquid Crystal Displays (LCD)	1014
*34–9	Scattering of Light by the Atmosphere	1015
34-10	Brightness: Lumens and Luminous Intensit	y 1016
*34-11	Efficiency of Lightbulbs	1016
	Questions, MisConceptions, Problems 1018–10	024
25		
55	DIFFRACTION	1025

35-1	Diffraction by a Single Slit or Disk	1026
*35-2	Intensity in Single-Slit Diffraction	
	Pattern	1028
*35-3	Diffraction in the Double-Slit Experiment	1031
35-4	Interference vs. Diffraction	1033
35-5	Limits of Resolution; Circular Apertures	1033
35-6	Resolution of Telescopes and	
	Microscopes; the λ Limit	1035
35-7	Resolution of the Human Eye and	
	Useful Magnification	1037
35-8	Diffraction Grating	1037
35-9	The Spectrometer and Spectroscopy	1040
*35-10	Peak Widths and Resolving Power for a	
	Diffraction Grating	1041
35-11	X-Rays and X-Ray Diffraction	1043
*35-12	X-Ray Imaging and Computed	
	Tomography (CT Scan)	1045
*35-13	Specialty Microscopes and Contrast	1048
	Questions, MisConceptions, Problems 1049–1	1054

CONTENTS ix

36 The Special Theory of 1055

36-1	Galilean-Newtonian Relativity	1056
36-2	The Michelson–Morley Experiment	1058
36-3	Postulates of the Special Theory	
	of Relativity	1061
36-4	Simultaneity	1062
36-5	Time Dilation and the Twin Paradox	1064
36-6	Length Contraction	1070
36-7	Four-Dimensional Space-Time	1072
36-8	Galilean and Lorentz Transformations	1072
36-9	Relativistic Momentum	1077
36-10	The Ultimate Speed	1079
36-11	$E = mc^2$; Mass and Energy	1080
36-12	Doppler Shift for Light	1085
36-13	The Impact of Special Relativity	1086
	Questions, MisConceptions, Problems 1088–109	94

37 Early Quantum Theory and Models of the Atom 1095

37-1	Blackbody Radiation;	
	Planck's Quantum Hypothesis	1096
37-2	Photon Theory of Light and the	
	Photoelectric Effect	1098
37-3	Energy, Mass, and Momentum of a	
	Photon	1101
37-4	Compton Effect	1102
37-5	Photon Interactions; Pair Production	1104
37-6	Wave–Particle Duality; the Principle of	
	Complementarity	1105
37-7	Wave Nature of Matter	1106
37-8	Electron Microscopes	1108
37-9	Early Models of the Atom	1110
37-10	Atomic Spectra: Key to the Structure	
	of the Atom	1111
37 - 11	The Bohr Model	1113
37-12	de Broglie's Hypothesis Applied to Atoms	1120
	Questions MisConceptions Problems 1121–112	27

Appendices

A	Mathematical Formulas	A-1
В	Derivatives and Integrals	A-6
С	Numerical Integration	A-8
D	More on Dimensional Analysis	A-12
Е	Gravitational Force Due to a Spherical Mass Distribution	A-13
F	Differential Form of Maxwell's Equations	A-16
G	Selected Isotopes	A-18
Answers to Odd-Numbered Problems		A-23
Index		A-47
Photo Credits		A-77

38	QUANTUM MECHANICS	1128
38-1	Quantum Mechanics-A New Theory	1129
38-2	The Wave Function and Its Interpretation;	
	the Double-Slit Experiment	1129
38-3	The Heisenberg Uncertainty Principle	1131
38-4	Philosophic Implications;	
	Probability Versus Determinism	1135
38-5	The Schrödinger Equation in One	
	Dimension—Time-Independent Form	1136
*38-6	Time-Dependent Schrödinger Equation	1138
38-7	Free Particles; Plane Waves and	
	Wave Packets	1140
38-8	Particle in an Infinitely Deep Square	
	Well Potential (a Rigid Box)	1142
38-9	Finite Potential Well	1147
38-10	Tunneling through a Barrier	1149
	Questions, MisConceptions, Problems 1152-1	157

39 Quantum Mechanics of Atoms 1158

39-1	Quantum-Mechanical View of Atoms	1159
39-2	Hydrogen Atom: Schrödinger	
	Equation and Quantum Numbers	1159
39-3	Hydrogen Atom Wave Functions	1163
39-4	Multielectron Atoms;	
	the Exclusion Principle	1166
39-5	Periodic Table of Elements	1167
39-6	X-Ray Spectra and Atomic Number	1169
*39–7	Magnetic Dipole Moment;	
	Total Angular Momentum	1171
39-8	Fluorescence and Phosphorescence	1174
39–9	Lasers	1175
*39-10	Holography	1178
	Questions MisConceptions Problems 1180–118	5

40 MOLECULES AND SOLIDS 1186

40-1	Bonding in Molecules	1187
40-2	Potential-Energy Diagrams	
	for Molecules	1189
40-3	Weak (van der Waals) Bonds	1192
40-4	Molecular Spectra	1196
40-5	Bonding in Solids	1202
40-6	Free-Electron Theory of Metals;	
	Fermi Energy	1203
40 - 7	Band Theory of Solids	1208
40-8	Semiconductors and Doping	1210
40-9	Semiconductor Diodes, LEDs, OLEDs	1212
40 - 10	Transistors: Bipolar and MOSFETs	1218
40 - 11	Integrated Circuits, 10-nm Technology	1219
	Questions, MisConceptions, Problems 1220–122	5

41 Nuclear Physics and Radioactivity 1226

41-1	Structure and Properties of the Nucleus	1227
41-2	Binding Energy and Nuclear Forces	1230
41-3	Radioactivity	1233
41-4	Alpha Decay	1234
41-5	Beta Decay	1237
41-6	Gamma Decay	1239
41-7	Conservation of Nucleon Number and	
	Other Conservation Laws	1240
41-8	Half-Life and Rate of Decay	1240
41-9	Decay Series	1245
41 - 10	Radioactive Dating	1246
41-11	Detection of Particles	1248
	Questions, MisConceptions, Problems 1250-125.	5

42 Nuclear Energy; Effects and Uses of Radiation 1256

42-1	Nuclear Reactions and the	
	Transmutation of Elements	1257
42-2	Cross Section	1260
42-3	Nuclear Fission; Nuclear Reactors	1261
42 - 4	Nuclear Fusion	1266
42-5	Passage of Radiation Through Matter;	
	Biological Damage	1271
42-6	Measurement of Radiation-Dosimetry	1272
*42-7	Radiation Therapy	1276
*42-8	Tracers in Research and Medicine	1277
*42–9	Emission Tomography: PET and SPECT	1278
*42-10	Nuclear Magnetic Resonance (NMR);	
	Magnetic Resonance Imaging (MRI)	1279
	Questions, MisConceptions, Problems 1283-128	8

43 Elementary Particles 1289

43-1	High-Energy Particles and Accelerators	1290
43-2	Beginnings of Elementary Particle	
	Physics—Particle Exchange	1296
43-3	Particles and Antiparticles	1299
43-4	Particle Interactions and	
	Conservation Laws	1300
43-5	Neutrinos	1302
43-6	Particle Classification	1304
43-7	Particle Stability and Resonances	1306
43-8	Strangeness? Charm?	
	Towards a New Model	1307
43-9	Quarks	1308
43-10	The Standard Model: QCD and	
	Electroweak Theory	1311
43-11	Grand Unified Theories	1314
43-12	Strings and Supersymmetry	1317
	Questions, MisConceptions, Problems 1318–123	31

44 Astrophysics and Cosmology

44-1	Stars and Galaxies	1323
44 - 2	Stellar Evolution: Birth and Death	
	of Stars, Nucleosynthesis	1326
44-3	Distance Measurements	1332
44-4	General Relativity: Gravity and the	
	Curvature of Space	1334
44-5	The Expanding Universe: Redshift	
	and Hubble's Law	1338
44-6	The Big Bang and the Cosmic	
	Microwave Background	1342
44 - 7	The Standard Cosmological Model:	
	Early History of the Universe	1345
44 - 8	Inflation: Explaining Flatness,	
	Uniformity, and Structure	1348
44-9	Dark Matter and Dark Energy	1350
44 - 10	Large-Scale Structure of the Universe	1353
44-11	Gravitational Waves—LIGO	1354
44-12	Finally	1354
	Questions, MisConceptions, Problems 1356-136	0

Appendices

Α	Mathematical Formulas	A-1	
В	Derivatives and Integrals	A-6	
С	Numerical Integration	A-8	
D	More on Dimensional Analysis	A-12	
E	Gravitational Force Due to a		
	Spherical Mass Distribution	A-13	
F	Differential Form of Maxwell's		
	Equations	A-16	
G	Selected Isotopes	A-18	
Answers to Odd-Numbered Problems A-23			
Index			
Photo Credits			

1322

Applications (Selected) to Medicine and Biology and to Engineering, Environment, Everyday Life, Etc.

(Entries with a star * include material new to this edition)

Chapter 1	
Viruses attack cell	7
Heartbeats in a lifetime	12
Number of nucleons in human body	17
Lung capacity	19
Building collapse 2, 332, 346	6–7
The 8000-m peaks	9
Making estimates: volume of a lake	11
Page thickness	12
Building height by triangulation	12
Earth radius estimate 13,	18
Fermi estimates	13
Particulate pollution	18
Global positioning satellite	18
Computer chips	18
Chapter 2	
Airport runway design	22
All port rullway design	52
Car broking distance 25.1	02
CD bit size bit rate playing time 48	.03
Doch Size, bit fate, playing time 40,	33
*DaseDall 49, 62, 65, 64, J	00
Basketball 50, 85, 1	.09
Goli putt, upnili or down	52
Rapid transit system	55
Chapter 3	
Helicopter supply drop 54, 72,	83
*Sports 54, 65, 69, 71, 76, 77, 79, 80,	81,
82,83,	84
Kicked football 69,	71
Truck escape lane 79, 1	10
Golf on the Moon	82
Extreme sports	83
Chapter 4	
How we can walk	92
Whiplash 1	.06
*Force heart exerts 1	.07
Rocket 85, 92, 108, 233, 252, 3	95
Skater pushoff	91
What force accelerates a car	92
You weigh less in a falling elevator	96
Hockey	98
Elevator discomfort 101 1	08
Mechanical advantage pulley 102 1	88
Accelerometer 1	02
*Sports 106 107 108 109 110 1	12
*Bear sling 106, 107, 100, 107, 110, 1	12
Tug of war 106,2	955
Car accident "a's"	07
Optical twoozers 108 016 0	107
Tightrope walker 100,910,9	00
Resketball shot	00
Mountain alimbars 110 114 115 102 2	.09
City planning cars on hill	10
City plaining, cars on nill 1	14
Dicyclifig 112, 1	.14

Supermarket rome design	112
De amadam actanaid	114 262
Doomsday asteroid	114, 262
*Car stuck in mud	115
Chapter 5	
Centrifugation	126
Skiing	116 121 136
Duch or mult o stod?	110, 121, 150
Push or pull a sled?	120
Skier speed in air vs. on sno	w 121
*Simulating gravity 126, 136	5, 141, 168, 171
*Uranium enrichment, reacto	or, bomb 126
Ferris wheel	129
Avoid skidding on a curve	130-2
Banked highway curves	132
Cross-country skiing friction	n 136
Pototing space station	126 141 169
Rotating space station	130, 141, 100
*Rotor ride	137,143
Airplane bank/turn	137, 144
Roller coaster upside down	141
Car flying up off road	141
Rock climbing friction	143
Chanton (
Chapter o	154 5
weightlessness	154–5
*Astronauts in orbit	145, 155, 165
Gravity on tall peaks	150
Oil and mineral exploration	150, 165, 167
Satellites, spacecraft 145, 1	52-5, 168, 169
Geostationary satellites	153
Free fall for athletes	155
Planets	155 8 167
Determining the Courie mean	155-6,107
Determining the Sun's mass	158
Planets around other stars	158, 250, 262
*Ocean tides	159, 165, 170
Lagrange point	160
*Moon's orbit, periods, phase	es,
diagram	161, 169
*Eclipses	161
Curved space	163-4
Black holes	164 167
White dwarfs	167
Compta estanoida magna	169 160 171
Comets, asteroids, moons	108, 109, 1/1
GPS	169
Milky Way Galaxy	171
Chapter 7	
Baseball pitch	172
Car stopping distance $\propto v^2$	183
Lever	187 334
	107, 334
*Pulley	188
Jet catapults	189
Bicycle, sprockets (teeth)	192, 299
Climbing rope stretch	193
Chapter 8	
Stair-climbing power	213
*ATP	215
Hile oner logg	210
mike over logs	218

Pole vault	194, 203–4, (189)
Downhill ski runs	194
Roller coaster	198, 202, 209
Escape velocity from I	Earth
or Moon	212
Power needs of car	214
Efficiency of engine	215
*Gravitational assist	216–7, 224, 263
High jump	220
Bungee jump	221
Lunar module landing	222
Escape velocity from so	olar system 223
Ski jump	225
Long jump	225
Chapter 9	
Impulse in fall: break a	leg? 257
Billiard balls	227, 230, 237, 242
Tennis serve	229 234
Rocket propulsion	233 252 395
Rifle recoil	233, 232, 393
Karate blow	235
Nuclear reactors	233
Nuclear collisions	238 230 241 243
Pallistia pandulum spa	230, 239, 241, 243
Distant planat discover	240
Convoyor bolt	y 230, 262
Conveyor bell	255
Car crashworthiness	261
Asteroid danger	262
Force wind exerts	263
Bowling	263
Chapter 10	
Acuity of bird's eye	266
Centrifuge	271
*Biceps, triceps, torque	273, 295, 339
Situps	291
Fast mammal	291
Rotating carnival rides	264, 267, 268
Tire iron extension	272
Flywheel, energy	282,301
Yo-yo	287
Braking forces on a car	288–9
Bicvcle odometer	291
Tightrope walking	291
*Total solar eclipse	293
Wrench torque	293
Hammer throw	296
CD rotation frequency	298
Bicycle gears	200
Cue stick ball roll	239
*Bicycle turn angle	300 201
	501
Chapter 11	202 204 222
Kotating skaters/divers	302, 304, 330
Neutron star collapse	305, 330
Strange spinning bike v	wheel 307, 314

Automobile wheel balancing	314–5
Precessing top	317–8
Gyroscope	318
Hurricanes, cyclones, typhoons	321, 394
*Anticyclonic weather	321
Precession of the equinoxes	327
SUV rollover	328
Baseball bat sweet spot	330
Chapter 12	/
*Forces in muscles & joints 339,	358, (273)
*What can make an athlete	339
*Forces on the spine and back pa	ain 340
Human balance with loads	342
*Bone tracture 340	221 252
Buildings, statics	331-332
Lever, mechanical advantage	225
Cantilover	335
Fracture	345_7
Tragic collapse 34	6_7 (332)
Trusses and bridges	47_9 363
Architecture: arches and domes	350-2
*Forces in a dome	352
Chapter 13	
Pressure in cells	371
Blood flow 380	. 384. 386
Human circulatory system	380
Blood loss to brain, TIA	384
*Air flow in animal burrow	384
Heart disease, artery clogging	386
Walking on water, insect	387
Heart as a pump	388–9
*Blood pressure measurement	389
Blood transfusion	395, 396
Water supply pressure	369
Atmospheric pressure decrease	
with elevation	370
Altitude where air pressure is h	alf $3/0$
Finger holds water in straw	3/1
Hydraulia brokos	272
Prossure gauges	272 2
Barometer	372-3
Suction	373
Hydrometer	377
Continental drift plate tectonic	s 378
*Lake level change, rock	.5 270
thrown overboard	378, 390
Helium balloon lift	378
Heating duct	380
Hot-water heating system flow	382
Perfume atomizer	383
Airplane wing lift	383
Sailing upwind	383
Baseball curve	384
Why smoke goes up a chimney	384
Soaps and detergents	387
Fumps 38	8-9, (5/4)
Sipnon	390
nyuraulic press	393

Rocket thrust 395
Reynolds number 395
Barrel broken by thin liquid column 397
Chanter 14
Spider web oscillations 405
Human leg as pendulum 424
Shoely absorbers 200 415
Unwanted floor vibrations 406
Unwanted floor vibrations 406
Loudspeaker 406–7
*Pendulum clock 412, 421, 424
Geology 412,415
Measure g with pendulum 412
Earthquake dampers 415
Child on a swing, resonance 417–8
Resonance damage 418
<i>Q</i> -value 419, 425, 896
Bungee jumper 422
*Metronome 424
Natural stride 424
Tall building sway 426
Chapter 15
Experience by bats delphins
whales 434
Water waves 428 435
Sound waves 420, 455
Sound wave 451,400 JJ Coology 425,452,457
Geology 455,452,457
Eartinquake waves 455, 457, 450, 455
Square wave 442
*Cell phone signal 451
AM and FM radio wave bending 452
Fish and fisher: internal reflection 456
Seismic reflection: oil prospecting 457
Seismic reflection: oil prospecting457Coffee spill457
Seismic reflection: oil prospecting457Coffee spill457Tsunami459
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16464
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16464Wide range of human hearing464Sensitivity of the ear467, (466)
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16464Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16464Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16464Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16KillerWide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 469–72
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 469–72Piano strings460, 468, 469
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 469–72Piano strings460, 468, 469Distance from lightning, seconds461
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16KillerWide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16KillerWide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar violin468Guitar violin468
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Wide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471, 2
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tunie with heats475 6
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–92Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–22Tuning with beats475–6Dopper sing475–6
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480*Radar speed gun480
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–3*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480«Radar speed gun480Galaxy redshift480
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482–33*Doppler ultrasound imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480Galaxy redshift480Sonic boom; sound barrier481, 489
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482-33*Doppler ultrasound imaging483Stringed instruments460, 468-9Wind instruments460, 468-9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471-2Tuning with beats475-6Doppler in weather forecasting480Galaxy redshift480Sonic boom; sound barrier481, 489Sonar: depth in sea, Earth401, 2, 100
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480Galaxy redshift480Sonic boom; sound barrier481, 489Sonar: depth in sea, Earth481–2, 489
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480Sonic boom; sound barrier481, 489Sonar: depth in sea, Earth481–2, 489Signal-to-noise ratio486, 490, 679
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging482-3*Doppler ultrasound imaging483Stringed instruments460, 468-9Wind instruments460, 468-9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471-2Tuning with beats475-6Doppler in weather forecasting480Galaxy redshift480Sonar: depth in sea, Earth"soundings""soundings"481-2, 489Signal-to-noise ratio486, 490, 679Quartz oscillator clock487
Seismic reflection: oil prospecting457Coffee spill457Tsunami459Chapter 16Kide range of human hearing464Sensitivity of the ear467, (466)Bats use Doppler479Doppler blood-flow meter479, 491Ultrasound medical imaging483Stringed instruments460, 468–9Wind instruments460, 468–9Wind instruments460, 468, 469Distance from lightning, seconds461Autofocusing camera462Loudspeaker output465Musical scale468Guitar, violin468, 469, 484, 487Organ pipes471–2Tuning with beats475–6Doppler in weather forecasting480Galaxy redshift480Sonic boom; sound barrier481, 489Sonar: depth in sea, Earth"soundings""soundings"481–2, 489Signal-to-noise ratio486, 490, 679Quartz oscillator clock487Motion sensor489

Chapter 17	
Life under ice	500-1
Molecules in one breath	507, 514
Snorkels are short	515
*Hot air balloon	492, 515
Expansion joints	495, 498, 501
Do holes expand?	499
Opening a tight lid	499
Gas tank overflow	500
Highway buckling	501
Closed jars in fires	503
Mass (weight) of air in a roo	om 505
Cold and hot tire pressure	505
Thermostat	500
Purey glass	500
Type magura inacouracy	510 512
* Tape measure maccuracy	510, 515
Scuba 512,	515, 514, 515
Potato chip bag puff up	513
Chapter 18	
KE of molecules in cells	519
Humidity, and comfort	525-6
Chromatography	531
Diffusion in living organisms	531-2,536
Temperature effect on chem	nical
reactions	521
Evaporation cools	524 548
Humidity weather	526
*Temperature decrease of bo	iling
water with altitude	526_7
Pressure cooker	525
I ICSSUIC COOKCI	
	555
Chapter 19	555
Chapter 19 Working off Calories	540
Chapter 19 Working off Calories Measuring Calorie content	540 545, 570
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body	540 545, 570
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature	540 545, 570 548–9, (524)
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo	540 545, 570 548–9, (524) od 563, 574
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss	540 545, 570 548–9, (524) od 563, 574 564
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war	540 545, 570 548–9, (524) od 563, 574 564 m walls 565
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567
 Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing 	548–9, (524) od 563, 574 m walls 565 567 568
 Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo 	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571
 Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, 	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571
 Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries 	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573
 Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption 	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575
 Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat 	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575 575 561
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575 575 561 562
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575 575 561 562
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pan-	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575 575 561 562 es) 562
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pan- How clothing insulates	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575 575 575 561 562 es) 562 562
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you colo Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pane How clothing insulates <i>R</i> -values of thermal insulati	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 on 562
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pan- How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 on 562 562 on 562
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pand How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 es) 562 on 562 563 563
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pand How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 es) 562 on 562 563 563 564
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pand How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing Radiation from the sun, sea	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 es) 562 on 562 563 563 564 sons 566
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pand How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing Radiation from the sun, sea Astronomy—size of a star	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 on 562 on 562 on 563 563 564 sons 566 566
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pand How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing Radiation from the sun, sea Astronomy—size of a star Goose down loft	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 on 562 on 562 on 563 563 564 sons 566 566
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two pand How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing Radiation from the sun, sea Astronomy—size of a star Goose down loft Thermos bottle	540 545, 570 548–9, (524) od 563, 574 m walls 565 567 568 der 571 573 575 575 561 562 es) 562 es) 562 on 562 on 562 on 563 563 564 sons 566 568 568
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two part How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing Radiation from the sun, sea Astronomy—size of a star Goose down loft Thermos bottle Emergency blanket	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 575 575 561 562 es) 562 ces) 562 ces) 562 ces) 562 563 563 563 564 566 568 568 568
Chapter 19 Working off Calories Measuring Calorie content Evaporation and body temperature Body heat: convection by blo Body's radiative heat loss Room comfort: cool air, war Medical thermography Avoid plants freezing Eating snow makes you cold Heat conduction to skin, blood capillaries Leaf's energy absorption Metabolizing fat Cold tile, warm rugs Heat loss through windows Thermal windows (two part How clothing insulates <i>R</i> -values of thermal insulati Ocean currents and wind Convective home heating Dark vs. light clothing Radiation from the sun, sea Astronomy—size of a star Goose down loft Thermos bottle Emergency blanket Air parcels, weather, adiabati	540 545, 570 548–9, (524) od 563, 574 564 m walls 565 567 568 der 571 575 575 561 562 es) 562 on 562 on 562 on 562 on 562 563 564 sons 566 568 568 568 568

Chapter 20

Biological development, evolution 594
*Trees offsetting CO_2 buildup 608
Steam engine 576, 578, 582, 606
Internal combustion engines
578-80, 583-4
Engine efficiency 582–3
Refrigerators, air conditioners 584–6,
603
Heat pump 586–7, 603
*SEER rating 587
Thermal pollution, climate 598–600
*Carbon footprint 598
Energy resources 599, 605–6
Solar, thermal, wind energy 599, 605
Diesel engine 607, (575)
Stirling cycle 607
Jet engine, Brayton cycle 607
Dehumidifier 608, (537)
Chapter 21
Inside a cell: kinetic theory plus
electrostatic force 631
DNA structure, replication 631–3, 640
Static electricity 609, 610, 635, 640
Photocopiers and printers 619
Electrical shielding, safety 628
Chantan 22
Chapter 25
(ECC) 660 682 3 770
$\begin{array}{c} (ECO) & 000, 082-3, 779 \\ \hline \\ Dipoles in molecular biology & 672 \\ \hline \end{array}$
Heart heat depolarization process 622
Common voltages 10^{-4} V to 10^{8} V 663
Brackdown voltage
Lightning rods 666
*Supply voltage signal voltage 676
*Digital bits bytas binary numbers 676
* Analog to digital converter (ADC) 676
*Morse code 676
*Ritrate TV transmission 676 678 0 682
*Dit-fate, 1 v transmission 070, 070–9, 002
*Duantization error 677
*Sampling rate bit depth 677
*Digital-to-analog converter (DAC)
677.780
*Bandwidth 678
*Noise bit flips 678–9
*Digital error correction, parity bit 678
*Bit error rate 679
*Signal-to-noise ratio (S/N) 679
*TV and computer monitors 679–82
*Digital TV pixels subpixels 680
*Flat screens, HD 680–1
*Addressing pixels 680–1
*Data stream 681
*Active matrix, TFT data lines 681_2
*TV refresh rate 682
Oscilloscope 682
*ASCIL code 688
Photocell 689

Chapter 24

		700	Autora borcalis
594	Capacitor shocks, burns	703	Electric motors,
608	Heart defibrillator 703	3, 712, 764	Loudspeakers ar
2,606	Capacitor use as power backup	,	Chapter 28
	surge protector, memory	692,695	Coaxial cable
583–4	Condenser microphone	695	Solenoid switches:
582–3	Computer key	695	Magnetic circuit
684–6,	Camera flash energy	701	Relay (magnetic
603	Electrostatic air cleaner	710	
-7, 603	Tiny distance measurement	710	Chapter 29
587	Coaxial cable 714, 818	8, 874, 911	EM blood-flow f
8–600	*Dynamic random access		Induction stove
598	memory (DRAM)	716, 857	Generators, pow
605–6	Chapter 25		Alternators, in ca
9,605	Electrical conduction in human	1	Motor overload
(575)	nervous system, neurons	736–8	Eddy-current da
607	Action potential	737	Airport metal de
607	Battery construction, terminals	718–9	Iransformers, po
(537)	*Electric cars	720, 744	Cell phone charg
	Battery connections	721,724	Car ignition syst
	Loudspeaker wire thickness	725	* Wireless electric
631	Heating element	726–8	Inductive change
3 640	Resistance thermometer	726	Mognatic inform
5,640	Lightning bolt 728,	(690, 716)	Magnetic Inform
610	Household circuits, shorts	729–30	
628	Fuses, circuit breakers	729, 766	*RAM, DRAM
020	Safety—wires getting hot 7	29,764–6	*Bit-line & word-
	Extension cord danger	730	*Writing and read
	Hair dryer	732	* Volatile and non
3,779	Strain gauge	746	*Flash memory, w
672	Chapter 26		Cand mandam man
582–3	*Blood sugar phone app	747	Card reader, mag
663	Heart pacemaker	764	Crownd fault air
666	Electricity dangers to humans	764–6	(GECI)
666	Ventricular fibrillation	764	Shielded cable
676	Two-speed fan	752–3	Recycling solid y
676	Car battery charging	757	Recyching solid v
676	*Jump-starting a car, safely	758–9	Chapter 30
676	RC: sawtooth, flashers, wipers	763, 780	*Electric car indu
9,682	Hazards, electric safety	764–6	Surge protection
677–8	Proper grounding, plugs	765-6	Capacitors as filt
677	Leakage current	766	Loudspeaker cro
677	Dangerous downed power line	766	Impedance matc
⁽)	Ammeters, voltmeters,		3-phase AC
7, 780	ohmmeters	767–9	Q-value
678	Meter connection, corrections	768–9,781	Filter circuit
678–9	*Measurement affects quantity	y	Chapter 31
678	measured	769	Optical tweezers
679	Voltage divider	774	*TV from the Mo
679	Solar panel	778	Wireless devices
79–82	Potentiometer and bridge circui	ts 778–9	
680	Car battery corrosion	780	Antennas
580–1	Digital-to-analog converter (D	AC)	Phone call time l
580–1		780, (677)	*Solar sail
681	Chapter 27		Radio and TV
581–2	Electromagnetic blood pump	802	AM and FM
682	Blood flow rate, Hall effect	807	Cell phones, rem
682	Use of a compass	784	satellite TV
688	Magnetic declination	784	*GPS
689	Maps and true north	784	Solar power use

Aurora borealis	792
Electric motors, DC and AC 7	95–6
Loudspeakers and headsets	796
Chaptor 28	
Convint cable 818 874	011
Coaxial cable 010, 8/4	, 911 976
Solenoid switches: doorbell, car starter	020
Magnetic circuit breakers	820
Relay (magnetic)	830
Chapter 29	
EM blood-flow measurement	845
Induction stove	842
Generators, power plants 8	46–7
Alternators, in cars	848
Motor overload	849
Eddy-current damping 850	. 861
Airport metal detector	850
Transformers, power transmission 8	51-3
Cell phone charger	852
Car ignition system	852
*Wireless electric power	052
transmission	854
Inductive charger	854
Magnetic information storage	856
*Samicanductor mamory	57 0
*Semiconductor memory 8	057
*KAM, DKAM	857
*Bit-line & word-line	857
*Writing and reading memory	857
* Volatile and non volatile memory	858
*Flash memory, MOSFET, MRAM	858
Microphone	858
Card reader, magnetic strip	858
Seismograph	859
Ground fault circuit interrupter	
(GFCI)	859
Shielded cable	861
Recycling solid waste	861
Chapter 30	
*Electric car inductive charging	869
Surge protection	877
Capacitors as filters 884 896	897
Loudspeaker cross-over	884
Impedance matching	888
3-phase AC	880
$O value \qquad \qquad 806 (110)$	425)
Eilter circuit 050, (415,	42 <i>3</i>) 806
Thiter cheult	090
Chapter 31	
Optical tweezers 916	, 923
*TV from the Moon 898, 920	, 924
Wireless devices, transmission	
898, 91	7–20
Antennas 911	010
Phone call time lag	, 919
*Solar sail 916	,919 912
	,919 912 ,925
Radio and TV 9	,919 912 ,925 17–9
Radio and TV9AM and FM	919 912 925 925 17–9 918
Radio and TV9AM and FMCell phones, remotes, cable TV,	912 912 925 925 17–9 918
Radio and TV9AM and FMCell phones, remotes, cable TV, satellite TV	919 912 925 925 17–9 918 920
Radio and TV 9 AM and FM Cell phones, remotes, cable TV, satellite TV *GPS	912 912 925 17–9 918 920 924

Chapter 32	
Medical endoscope, bronch	oscope,
colonoscope	945
How tall a mirror do you ne	eed 930
Seeing yourself in a magni	fying
mirror (concave)	936–7
Convex (rearview mirrors)	938
Optical illusions	939, 998
Apparent water depth	939–40, 941
Rainbows	942,957
Colors underwater	943
Diamonds sparkle	944
Prism binoculars	944
Fiber optic cables	945, 954, 956
*High-frequency trading,	0.15
interception	945
Solar cooker	951
Washing machine water lev	/el
detector Dead weflecters	950
Road reflectors	957
Chapter 33	
Human eye	975–8
Fovea, denser in cones	976, 1037
Near- and far-sighted	976–8
Corrective lenses	976–7, 987
Contact lenses	978
Seeing underwater	978
Light microscopes	983–4,1048
Where your eye can see a	061
Compared film and digital	901
Cameras, min and digital	970-3
*CCD, CMOS sensors,	970-1
*Bayer pixels Foyean	971
Digital artifacts	971
Camera adjustments <i>f</i> -stop	971-3
Depth of field	973
*Resolution, compression, J	PEG
raw	973–4
Telephoto, wide angle	975
Optical vs. digital zoom	975
Magnifying glass	979-80
Telescopes	980-2
*Microscopes	983-4,1048
Lens aberrations	984–5
Film projector	989
Pinhole camera	990
Chapter 34	
Soap bubbles, oil films,	
colors	995, 1004-8
Highway mirages	998
Lens coatings	1008–9
Polarizing sunglasses	1012-13
Liquid crystal displays, TV a	and
computer screens	1014–5

Sky color	1015-
*Lightbulb efficiency, LED	1016-
Stealth aircraft coating	102
CD bits, pits & lands	102
Chapter 35	
Resolution of eve	1035, 103
Useful magnification	103
Spectroscopy in biology	104
X-ray diffraction in biology	104
Medical imaging: X-rays CT	1045_
*Interference microscope	1015
*Phase-contrast microscope	104
Hubble space telescope	1034-
Telescope and microscope	1001
resolution	1035-
X-rays	1043-
Tomography	1045-
Chanter 36	1010
Chapter 50 Space travel	1067
Global position system (GPS)	1068
Entropy supertrain	1000-
Padar speed sup	107
Radar speed gui	109.
Chapter 37	
Electron microscope image: bl	ood vesse
clot, retina, viruses 109	5,1109,(/
Photosynthesis	110
Flaster give a second structure (EM)	110.
TEM SEM 1100 1	151 (1005
TENI, SEIVI 1109, 1	101, (1095
Photodiadas soundtracks	109
Fliotodiodes, soundtracks	110
Chapter 38	
Scanning tunneling electron	115
A tomia forma microscope	115
Atomic force microscope	115
Chapter 39	
Fluorescence analysis	1174-
Medical uses of lasers, surgery	1178, 118
Neon lights	115
Fluorescent lightbulbs	117
Lasers 11	75–9, 121
Bar code readers	117
DVD, CD, Blu-ray	1177–
Holography	1178–
Chapter 40	
Cell energy-ATP	119
Weak bonds, DNA	1192-
Protein synthesis	1194–
*Pulse oximeter	121
Computer processor chips	118
Transparent objects	121
Zener diode voltage	
regulator 12	13–4, 122
Rectifiers	121

015-6	*Photovoltaic cells	1214-5
)16–7	*LED displays bulbs	1215-6
1022	TV remote	1215 1225
1022	*Solid state lighting	1215,1225
1024	*Solid-State lighting	1213-0
	*ph diode laser	1210
, 1037	*OLED, AMOLED displays	1216-/
1037	Amplifiers	1218
1041	*MOSFET switch	1218–9
1044	*Technology generation	1219
045–7	Chanter 41	
1048	Farliest life	1248
1048	Padiation film badges	1240 1274
034–5	Smalea dataatar	1249, 1274
	De die estima estimitar and sef	123/
035-7	Radioactive activity and safe	ety 1243–4
043_7	Carbon-14 dating	1246-7
045_7	Archeological & geological	
J - J-7	dating	1246-8
	Oldest Earth rocks	1248
067-8	Geiger counter	1248
068–9	Rubidium-strontium dating	1253
1071	Tritium dating	1254
1092	*Mass excess, mass defect	1254
	Chanton 42	
vessel.	Dialogical rediction domage	1071 6
9, (7)	Diological facilation damage	12/1-0
1102	Radiation dosimetry, RBE	12/2-0
1103	Radon exposure	12/4, 12/6
	Natural radioactive backgro	und 1274
1095)	Radiation exposure, film bac	dge 1274
1098	Radiation sickness	1274
1101	Whole-body dose	1275
1101	Radiation therapy	1276–7
	Proton therapy	1277
1151	Radioactive tracers	1277-8
1151	Gamma camera	1278
1151	Medical imaging PET SPE	T MRI
		1278-82
174–5	*Brain PET scan using cell pl	hone 1279
, 1183	Imaging resolutions compar	red 1282
1158	Radiation and thyroid	1202
1175	Nuclear reactors power play	1200
, 1216	1256 126	3_5 1260_71
1177	Broader reactors	1265
177–8	Manhattan project	1203
178–9	Mannattan project	1200
	Nuclear fusion	1266-/1
1102	Why stars shine	1267–9
102 4	Thermonuclear devices	1269
192-4	Fusion energy reactors	1269–71
194-0	Chapter 43	
1216	Linacs and tumor irradiation	n 1294
1186		1274
1210	Chapter 44	1000 00
	Stars and galaxies	1323–32
,1225	Black holes	1331, 1337–8
1214	Big Bang storyline	1345–8

Preface

New Stuff!

- **1. MisConceptual Questions**, 10 or 15 at the end of each chapter. The multiplechoice answers include common misconceptions as well as correct responses. Pedagogically, asking students to think, to consider the options, is more effective than just telling them what is valid and what is wrong. (These are in addition to the one at the start of each chapter.
- 2. Digital is all around us. Yet that word is not always used carefully. In this new edition we have 20 new pages describing the basics from the ground up. Binary numbers, *bits* and *bytes*, are introduced in Chapter 23 along with analog-to-digital conversion (ADC), and vice versa, including *digital audio* and how video screens work. Also information compression, *sampling rate*, *bit depth*, *pixel addressing*, *digital transmission* and, in later chapters, information storage (RAM, DRAM, flash), *digital cameras* and their *sensors* (CCD, CMOS).
- 3. Gravitational Assist (Slingshot) to accelerate spacecraft (Chapter 8).
- **4.** Magnetic field of a single moving charge, rarely treated (and if it is, maybe not well), and it shows the need for relativity theory.
- 5. Seeing yourself in a magnifying mirror (concave), angular magnification and blurriness with a paradox. Also convex (rearview) mirrors (Chapter 32).
- **6.** Pedagogical clarification on defining **potential energy**, and energy itself (Chapter 8), and on hundreds of other topics.
- 7. The Moon rises an hour later each day (Chapter 6), its phases, periods, and diagram.
- 8. Efficiency of lightbulbs (Chapter 34).
- **9. Idealization** vs. reality emphasized—such as PV diagrams (Chapter 19) as an idealized approximation.
- Many new Problems (~ 500) plus new Questions as well as the 500 or so MisConceptual Questions (point 1 above).
- 11. Many new worked-out Examples.
- **12.** More **math** steps included in derivations and Examples.
- 13. State of a system and *state variables* clarified (Chapter 17).
- **14.** Contemporary physics: Gravitational waves, LIGO and Virgo, Higgs, WIMPS, OLEDS and other semiconductor physics, nuclear fusion updates, neutrino-less double beta decay.
- **15.** New SI units (Chapter 1, Chapter 21, Tables).
- 16. Boiling temperature of water vs. elevation (Chapter 18).
- 17. Modern physics in earlier classical Chapters (sometimes in Problems): Light-years, observable universe (Chapter 1); optical tweezers (Chapter 4); uranium enrichment (Chapter 5); black holes and curved space, white dwarfs (Chapter 6); crystal structure (Chapter 7); Yukawa potential, Lennard-Jones potential (Chapter 8); neutrons, nuclear reactors, moderator, nuclear collisions, radioactive decay, neutron star collapse (Chapter 9); galaxy redshift (Chapter 16); gas diffusion of uranium (Chapter 18); quarks (Chapter 21); liquid-drop model of nucleus, Geiger counter, Van de Graaff (Chapter 23); transistors (Chapters 23, 29); isotopes, cyclotron (Chapter 27); MOSFET (Chapter 29); semiconductor (camera sensor), photon (Chapter 33); line spectra, X-ray crystallography (Chapter 35).
- 18. Second law of thermodynamics and heat energy reorganized (Chapter 20).
- 19. Symmetry emphasized throughout.
- **20.** Uranium enrichment, % needed in reactors, bombs (Chapters 5, 42).
- **21.** Mass excess, mass defect (Chapter 41).
- **22.** The *mole*, more careful definition (Chapter 17).
- 23. Liquid-gas ambiguity above critical temperature (Chapter 18).
- 24. Measurement affects quantity measured, new emphasis.

25. New Applications:

- Ocean Tides (Chapter 6)
- Anticyclonic weather (Chapter 11)
- Jump starting a car safely (Chapter 26)
- Light bulb efficiency (Chapter 34)
- Specialty microscopes and contrast (Chapter 35)
- Forces on Muscles and Joints (Chapter 12)
- Doppler ultrasound imaging (Chapter 16)
- Lake level change when rock thrown from boat (Chapter 13)
- Skier speed on snow vs. flying through the air (Chapter 5)
- Inductive charging (Chapter 29)
- Human body internal heat transfer is convection (blood) (Chapter 19)
- Blood pressure measurement (Chapter 13)
- Sports (lots)
- Voltage divider (Chapter 26, Problems)
- Flat screen TV (Chapters 23, 34, 40)
- Carbon footprint and climate (Chapter 20)
- Electrocardiogram (Chapter 23)
- Wireless from the Moon unimaginable (Chapter 31)
- Why snorkels are short (Chapter 17 Problem)
- Electric cars (Chapter 25)
- Digital (Chapters 23, 29, 33, 40) includes (in addition to details in point 2 above) quantization error, digital error correction, noise, bit error rate, digital TV data stream, refresh rate, active matrix, thin film transistors, digital memory, bit-line, reading and writing of memory cells (MOSFET), floating gate, volatile and nonvolatile memory, Bayer, JPEG, ASCII code, and more.

Seeing the World through Eyes that Know Physics

I was motivated to write a textbook different from others which typically present physics as a sequence of facts, like a catalog. Instead of beginning formally and dogmatically, I aim to begin each topic with everyday observations and experiences the students can relate to: start with specifics, the real world, and then go to the great generalizations and the more formal aspects of the physics, showing why we believe what we believe. This approach reflects how science is actually practiced.

The aim is to give students a thorough understanding of the basic concepts of physics in all its aspects, from mechanics to modern physics. Also important is to show students how useful physics is in their own everyday lives and in their future professions by means of interesting applications to biology, medicine, engineering, architecture, and more.

Much effort has gone into approaches for the practical techniques of solving problems: worked-out Examples, Problem Solving sections, and Problem Solving Strategies.

Chapter 1 is *not* a throwaway. It is fundamental to physics to realize that every measurement has an *uncertainty*, and how significant figures are used. Being able to make rapid *estimates* is a powerful tool useful for every student, and used throughout the book starting in Chapter 1 (you can estimate the Earth's radius!).

Mathematics can be an obstacle to students. I have aimed at including all steps in a derivation. Important mathematical tools, such as addition of vectors and vector product, are incorporated in the text where first needed, so they come with a context rather than in a forbidding introductory Chapter. Appendices contain a basic math review, derivatives and integrals, plus some more advanced topics including numerical integration, gravitational field of spherical mass distribution, Maxwell's equations in differential form, and a Table of selected nuclear isotopes (carefully updated, as are the Periodic Table and the Fundamental Constants found inside the back and front covers).

Some instructors may find this book contains more material than can be covered in their courses. The text offers great flexibility. Sections marked with a star * may be considered optional. These contain slightly more advanced

Versions of this Book

Complete version: 44 Chapters including 9 Chapters of modern physics.

Classic version: 37 Chapters, 35 on classical physics, plus one each on relativity and quantum theory.

3 Volume version: Available separately or packaged together

Volume 1: Chapters 1–20 on mechanics, including fluids, oscillations, waves, plus heat and thermodynamics.

Volume 2: Chapters 21–35 on electricity and magnetism, plus light and optics.

Volume 3: Chapters 36–44 on modern physics: relativity, quantum theory, atomic physics, condensed matter, nuclear physics, elementary particles, cosmology and astrophysics. physics material, or material not usually covered in typical courses, or interesting applications; they contain no material needed in later Chapters (except perhaps in later optional Sections). For a brief course, all optional material could be dropped as well as significant parts of Chapters 13, 16, 26, 30, and 35, and selected parts of Chapters 9, 12, 19, 20, 33. Topics not covered in class can be a valuable resource for outside study by students. Indeed, this text can serve as a useful reference for years because of its wide range of coverage.

Thanks

Many physics professors provided input or direct feedback on every aspect of this textbook. They are listed below, and I owe each a debt of gratitude.

Edward Adelson, The Ohio State University Lorraine Allen, United States Coast Guard Academy Zaven Altounian, McGill University Leon Amstutz, Taylor University Kim Arvidsson, Schreiner University Philip S. Baringer, Kansas University Bruce Barnett, Johns Hopkins University Michael Barnett, Lawrence Berkeley Lab Anand Batra, Howard University David Branning, Trinity College Bruce Bunker, University of Notre Dame Wayne Carr, Stevens Institute of Technology Charles Chiu, University of Texas Austin Roger N. Clark, U. S. Geological Survey Russell Clark, University of Pittsburgh Robert Coakley, University of Southern Maine David Curott, University of North Alabama Biman Das, SUNY Potsdam Bob Davis, Taylor University Kaushik De, University of Texas Arlington Michael Dennin, University of California Irvine Kathryn Dimiduk, Cornell University John DiNardo, Drexel University Scott Dudley, United States Air Force Academy John Essick, Reed College Cassandra Fesen, Dartmouth College Leonard Finegold, Drexel University Alex Filippenko, University of California Berkeley Richard Firestone, Lawrence Berkeley Lab Tom Furtak, Colorado School of Mines Gill Gabelmann, Washburn University Gabriel Orebi Gann, University of California Berkeley Edward Gibson, California State University Sacramento John Hamilton, University of Hawai'i - Hilo John Hardy, Texas A&M J. Erik Hendrickson, University of Wisconsin-Eau Claire Charles Hibbard, Lowell High School Dr. Laurent Hodges, Iowa State University David Hogg, New York University Mark Hollabaugh, Normandale Community College Russell Holmes, University of Minnesota Twin Cities William Holzapfel, University of California Berkeley Bob Jacobsen, University of California Berkeley Arthur W. John, Northeastern University David Jones, Florida International University Andrew N. Jordan, University of Rochester Teruki Kamon, Texas A&M Thomas Hemmick, State University of New York Stonybrook Daryao Khatri, University of the District of Columbia Woo-Joong Kim, Seattle University John Kinard, Greenwood High School Jay Kunze, Idaho State University Jim LaBelle, Dartmouth College Andrei Linde, Stanford University M.A.K. Lodhi, Texas Tech Lisa Madewell, University of Wisconsin

Ponn Maheswaranathan, Winthrop University Bruce Mason, University of Oklahoma Mark Mattson, James Madison University Linda McDonald, North Park College Raj Mohanty, Boston University Giuseppe Molesini, Isituto Nazionale di ottica Florence Lisa K. Morris, Washington State University Richard Muller, University of California Berkeley Blaine Norum, University of Virginia Lauren Movatne, Reedley College Alexandria Oakes, Eastern Michigan University Ralph Oberly, Marshall University Michael Ottinger, San Juan College Lyman Page, Princeton Laurence Palmer, University of Maryland Bruce Partridge, Haverford College R. Daryl Pedigo, University of Washington Robert Pelcovitz, Brown University Saul Perlmutter, University of California Berkeley Vahe Peroomian, UCLA Harvey Picker, Trinity College Amy Pope, Clemson University James Rabchuk, Western Illinois University Michele Rallis, Ohio State University Andrew Resnick, Cleveland State University Paul Richards, University of California Berkeley Peter Riley, University of Texas Austin Dennis Rioux, University of Wisconsin Oshkosh John Rollino, Rutgers University Larry Rowan, University of North Carolina Chapel Hill Arthur Schmidt, Northwestern University Cindy Schwarz, Vassar College Peter Sheldon, Randolph-Macon Woman's College James Siegrist, University of California Berkeley Christopher Sirola, University of Southern Mississippi Earl Skelton, Georgetown University George Smoot, University of California Berkeley Stanley Sobolewski, Indiana University of Pennsylvania Mark Sprague, East Carolina University Michael Strauss, University of Oklahoma Leo Takahashi, Pennsylvania State University Richard Taylor, University of Oregon Oswald Tekyi-Mensah, Alabama State University Ray Turner, Clemson University Som Tyagi, Drexel University David Vakil, El Camino College Robert Webb, Texas A&M Robert Weidman, Michigan Technological University Edward A. Whittaker, Stevens Institute of Technology Lisa M. Will, San Diego City College Suzanne Willis, Northern Illinois University Michael Winokur, University of Wisconsin-Madison Stanley George Wojcicki, Stanford University Mark Worthy, Mississippi State University Edward Wright, UCLA Todd Young, Wayne State College

I owe special thanks to Prof. Bob Davis for much valuable input, and especially for working out all the Problems and producing the Solutions Manual for all Problems, as well as for providing the answers to odd-numbered Problems at the back of the book. Many thanks also to J. Erik Hendrickson who collaborated with Bob Davis on the solutions, and to the team they managed (Michael Ottinger, John Kinard, David Jones, Kristi Hatch, Lisa Will).

I am especially grateful to Profs. Lorraine Allen, Kathryn Dimiduk, Michael Strauss, Cindy Schwarz, Robert Coakley, Robert Pelcovitz, Mark Hollabaugh, Charles Hibbard, and Michael Winokur, who helped root out errors and offered significant improvements and clarifications.

For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophysics, I was fortunate to receive generous input from some of the top experts in the field, to whom I owe a debt of gratitude: Saul Perlmutter, George Smoot, Richard Muller, Alex Filippenko, Paul Richards, Gabriel Orebi Gann, James Siegrist, and William Holzapfel (UC Berkeley), Andreí Linde (Stanford U.), Lyman Page (Princeton), Edward Wright (UCLA), Michael Strauss (University of Oklahoma), and Bob Jacobsen (UC Berkeley).

I also wish to thank many others at the University of California, Berkeley, Physics Department for helpful discussions, and for hospitality. Thanks also to Prof. Tito Arecchi at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Pearson Education with whom I worked on this project, especially Jeanne Zalesky and Paul Corey, and the perspicacious editors Margy Kuntz and Andrea Giancoli.

The final responsibility for all errors lies with me. I welcome comments, corrections, and suggestions as soon as possible to benefit students for the next reprint.

D.G.

email: jeanne.zalesky@pearson.com paper mail: Jeanne Zalesky Pearson Education 501 Boylston Street Boston, MA 020116

About the Author

Doug Giancoli obtained his BA in physics (summa cum laude) from UC Berkeley, his MS in physics at MIT, and his PhD in elementary particle physics back at UC Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley's Virus Lab developing skills in molecular biology and biophysics.

His mentors include Nobel winners Emilio Segrè, Barry Barish, and Donald Glaser.

He has taught a wide range of undergraduate courses, traditional as well as innovative ones, and works to improve his textbooks meticulously, seeking ways to provide a better understanding of physics for students.

Doug loves the outdoors, especially climbing peaks. He says climbing peaks is like learning physics: it takes effort and the rewards are great.

Students Advice

HOW TO STUDY

- 1. Read the Chapter. Learn new vocabulary and notation. Respond to questions and exercises as they occur. Follow carefully the steps of worked-out Examples and derivations. Avoid time looking at a screen. Paper is better than pixels when it comes to learning and thinking.
- 2. Attend all class meetings. Listen. Take notes. Ask questions (everyone wants to, but maybe you will have the courage). You will get more out of class if you read the Chapter first.
- **3.** Read the Chapter again, paying attention to details. Follow derivations and worked-out Examples. Absorb their logic. Answer Exercises and as many of the end-of-Chapter Questions as you can, and all MisConceptual Questions.
- **4.** Solve at least 10 to 20 end-of-Chapter Problems, especially those assigned. In doing Problems you may find out what you learned and what you didn't. Discuss them with other students. Problem solving is one of the great learning tools. Don't just look for a formula—it might be the wrong one.

NOTES ON THE FORMAT AND PROBLEM SOLVING

- 1. Sections marked with a star (*) may be considered optional or advanced. They can be omitted without interrupting the main flow of topics. No later material depends on them except possibly later starred Sections. They may be fun to read, though.
- 2. The customary **conventions** are used: symbols for quantities (such as *m* for mass) are italicized, whereas units (such as m for meter) are not italicized. Symbols for vectors are shown in boldface with a small arrow above: $\vec{\mathbf{F}}$.
- **3.** Few equations are valid in all situations. Where practical, the **range of validity** of important equations are stated in square brackets next to the equation. The equations that represent the great laws of physics are displayed with a tan background, as are a few other indispensable equations.
- 4. At the end of each Chapter is a set of **Questions** you should try to answer. Attempt all the multiple-choice **MisConceptual Questions**, which are intendend to get common misconceptions "out on the table" by including them as responses (temptations) along with correct answers. Most important are **Problems** which are ranked as Level I, II, or III, according to estimated difficulty. Level I Problems are easiest, Level II are standard Problems, and Level III are "challenge problems." These ranked Problems are arranged by Section, but Problems for a given Section may depend on earlier material too. There follows a group of **General Problems**, not arranged by Section or ranked. Problems that relate to optional Sections are starred (*). Answers to odd-numbered Problems are given at the end of the book.
- 5. Being able to solve **Problems** is a crucial part of learning physics, and provides a powerful means for understanding the concepts and principles. This book contains many aids to problem solving: (a) worked-out **Examples**, including an Approach and a Solution, which should be studied as an integral part of the text; (b) some of the worked-out Examples are **Estimation Examples**, which show how rough or approximate results can be obtained even if the given data are sparse (see Section 1-6); (c) **Problem Solving Strategies** placed throughout the text to suggest a step-by-step approach to problem solving for a particular topic—but the basics remain the same; most of these "Strategies" are followed by an Example that is solved by explicitly following the suggested steps; (d) special problem-solving Sections; (e) "Problem Solving" marginal notes which refer to hints within the text for solving Problems; (f) **Exercises** within the text that you should work out immediately, and then check your response against the answer given at the bottom of the last page of that Chapter; (g) the Problems themselves at the end of each Chapter.
- 6. Conceptual Examples pose a question which hopefully starts you to think about a response. Give yourself a little time to come up with your own response before reading the Response given.
- 7. Math review, plus additional topics, are found in **Appendices**. Useful data, conversion factors, and math formulas are found inside the front and back covers.

USE OF COLOR

Vectors			
Ag	eneral vector		-
:	resultant vector (sum) is slight	ly thicker	>
,	components of any vector are o	dashed 	-
Dis	placement $(\vec{\mathbf{D}}, \vec{\mathbf{r}})$		-
Vel	ocity $(\vec{\mathbf{v}})$		-
Acc	celeration (\vec{a})	>	-
For	$\operatorname{ce}(\vec{\mathbf{F}})$		-
	Force on second object	\longrightarrow	
	or third object in same figure	\longrightarrow	
Mo	mentum ($\vec{\mathbf{p}}$ or $m\vec{\mathbf{v}}$)		-
Ang	gular momentum (\vec{L})		-
Ang	gular velocity ($\vec{\omega}$)		-
Tor	que $(\vec{\tau})$	\longrightarrow	-
Ele	ctric field $(\vec{\mathbf{E}})$		-
Ma	gnetic field (\vec{B})		-
Electricity and mag	netism	Electric circuit syn	nbols
Electric field lines		Wire, with switch S	<u>S</u>
Equipotential lines		Resistor	
Magnetic field lines		Capacitor	
Electric charge (+)	+ or • +	Inductor	-0000-
Electric charge (-)	- or • -	Battery	—I
		Ground	Ţ
Optics		Other	
Light rays —		Energy level	
Object	1	Measurement lines	← 1.0 m →
Real image (dashed)		Path of a moving object	*
Virtual image (dashed and paler)		Direction of motion or current	\rightarrow

This page intentionally left blank

Image of the Earth from out in space. The sky appears black because there are so few molecules to reflect light. (Why the sky appears blue to us on Earth has to do with scattering of light by molecules of the atmosphere, as discussed in Chapter 34.) Note the storm off the coast of Mexico. Important physics is covered in this first Chapter, including measurement uncertainty and how to make an estimate. For example, we can determine the radius of the Earth without going out in space, but just by being near a lake or bay.

Introduction, Measurement, Estimating

CHAPTER-OPENING QUESTIONS—Guess now!

1. How many cm^3 are in $1.0 m^3$?

(a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000.

2. Suppose you wanted to actually measure the radius of the Earth, at least roughly, rather than taking other people's word for what it is. Which response below describes the best approach?

- (a) Use an extremely long measuring tape.
- (b) It is only possible by flying high enough to see the actual curvature of the Earth.
- (c) Use a standard measuring tape, a stepladder, and a large smooth lake.
- (d) Use a laser and a mirror on the Moon or on a satellite.
- (e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don't worry about getting the right answer now—the idea is to get your preconceived notions out on the table. If they are misconceptions, we expect them to be cleared up as you read the Chapter. You will get another chance at the Question later in the Chapter when the appropriate material has been covered. These Chapter-Opening Questions will also help you see the power and usefulness of physics.]

CONTENTS

- 1–1 How Science Works
- 1–2 Models, Theories, and Laws
- **1–3** Measurement and Uncertainty; Significant Figures
- 1–4 Units, Standards, and the SI System
- **1–5** Converting Units
- 1–6 Order of Magnitude: Rapid Estimating
- *1–7 Dimensions and Dimensional Analysis

(a)

(D)

FIGURE 1-1 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands. (b) The Hartford Civic Center collapsed in 1978, just two years after it was built.

Physics is the most basic of the sciences. It deals with the behavior and structure of matter. The field of physics is usually divided into *classical physics* which includes motion, fluids, heat, sound, light, electricity and magnetism; and *modern physics* which includes the topics of relativity, atomic structure, condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics. We will cover all these topics in this book, beginning with motion (or mechanics, as it is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is wonderfully useful for anyone making a career in science or technology. Engineers, for example, must know how to calculate the forces within a structure to design it so that it remains standing (Fig. 1–1a). Indeed, in Chapter 12 we will see a worked-out Example of how a simple physics calculation—or even intuition based on understanding the physics of forces—would have saved hundreds of lives (Fig. 1–1b). We will see many examples in this book of how physics is useful in many fields, and in everyday life.

1–1 How Science Works

There is a real physical world out there. We could just walk through it, not thinking much about it. Or, we can instead examine it carefully. That is what scientists do. The aim of science is the search for order in our observations of the physical world so as to provide a deeper picture or description of this world around us. Sometimes we just want to understand how things work.

Some people seem to think that science is a mechanical process of collecting facts and devising theories. But it is not so simple. Science is a creative activity, and in many ways resembles other creative activities of the human mind.

One important aspect of science is **observation** of events (which great writers and artists also do), and includes the design and carrying out of experiments. But observation and experiment require imagination, because scientists can never include everything in a description of what they observe. In other words, scientists must make judgments about what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384–322 в.с.) and Galileo (1564–1642), interpreted motion along a horizontal surface. Aristotle noted that objects given an initial push along the ground (or on a level tabletop) always slow down and stop. Consequently, Aristotle argued, the natural state of an object is to be at rest. Galileo, in his reexamination of horizontal motion in the 1600s, had the idea that friction is a kind of force like a push or a pull; and he imagined that if friction could be eliminated, an object given an initial push along a horizontal surface would continue to move indefinitely without stopping. He concluded that for an object to be in motion was *just as natural* as for it to be at rest. By inventing a new approach, Galileo founded our modern view of motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination. Galileo made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of the scientific process. The other side is the invention or creation of **theories** to explain and order the observations. Theories are never derived directly from observations. Observations may help inspire a theory, and theories are accepted or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of humans. For example, the idea that matter is made up of atoms (the atomic theory) was not arrived at by direct observation of atoms. Rather, the idea sprang from creative minds. The theory of relativity, the electromagnetic theory of light, and Newton's law of universal gravitation were likewise the result of human imagination.

The great theories of science may be compared, as creative achievements, with great works of art or literature. But how does science differ from these other creative activities? One important difference is that science requires **testing** of its ideas or theories to see if their predictions are borne out by experiment.

But theories are not "proved" by testing. First of all, no measuring instrument is perfect, so exact confirmation is not possible. Furthermore, it is not possible to test a theory in every single possible circumstance. Hence a theory cannot be absolutely verified.

Indeed, the history of science tells us that long-held theories can often be replaced by new ones.

1-2 Models, Theories, and Laws

When scientists are trying to understand a particular aspect of the physical world, they often make use of a **model**. A model, in the scientist's sense, is a kind of analogy or mental image of the phenomena in terms of something we are familiar with. One example is the wave model of light. We cannot see waves of light as we can water waves. But it is valuable to think of light as made up of waves because experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual picture something to hold on to—when we cannot see what actually is happening in the real world. Models often give us a deeper understanding: the analogy to a known system (for instance, water waves in the above example) can suggest new experiments to perform and can provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. Usually a model is relatively simple and provides a structural similarity to the phenomena being studied. A **theory** is broader, more detailed, and can give quantitatively testable predictions, often with great precision.

It is important not to confuse a model or a theory with the real world and the phenomena themselves. Theories are descriptions of the physical world, and they are made up by us. Theories are *invented*—usually by very smart people.

Scientists give the title **law** to certain concise but general statements about how nature behaves (that energy is conserved, for example). Sometimes the statement takes the form of a relationship or equation between quantities (such as Newton's second law, F = ma).

To be called a law, a statement must be found experimentally valid over a wide range of observed phenomena. For less general statements, the term **principle** is often used (such as Archimedes' principle). We use "theory" to describe a more general picture of a large group of phenomena.

Scientific laws are different from political laws, which are *prescriptive*: they tell us how we ought to behave. Scientific laws are *descriptive*: they do not say how nature *should* behave, but rather are meant to describe how nature *does* behave. As with theories, laws cannot be tested in the infinite variety of cases possible. So we cannot be sure that any law is absolutely true. We use the term "law" when its validity has been tested over a wide range of situations, and when any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were true. But they are obliged to keep an open mind in case new information should alter the validity of any given law or theory. In other words, laws of physics, or the "laws of nature", represent our descriptions of reality and are not inalterable facts that last forever. Laws are not lying there in nature, waiting to be discovered. We humans, the brightest humans, invent the laws using observations and intuition as a basis. And we hope our laws provide a good description of nature, and at a minimum give us a reliable approximation of how nature really behaves.

1–3 Measurement and Uncertainty; Significant Figures

In the quest to understand the world around us, scientists seek to find relationships among physical quantities that can be measured.

Uncertainty

Reliable measurements are an important part of physics. But no measurement is absolutely precise. There is an uncertainty associated with every measurement. Among the most important sources of uncertainty, other than blunders, are the limited accuracy of every measuring instrument and the inability to read CAUTION Theories and laws are NOT discovered.

They are invented

FIGURE 1–2 Measuring the width of a board with a centimeter ruler. The uncertainty is about ± 1 mm.

an instrument (such as a ruler) beyond some fraction of the smallest division shown. For example, if you were to use a centimeter ruler to measure the width of a board (Fig. 1–2), the result could be claimed to be precise to about 0.1 cm (1 mm), the smallest division on the ruler, although half of this value might be a valid claim as well. The reason is that it is difficult for the observer to estimate (or *interpolate*) between the smallest divisions. Furthermore, the ruler itself may not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the **estimated uncertainty** in the measurement. For example, the width of a board might be written as 8.8 ± 0.1 cm. The ± 0.1 cm ("plus or minus 0.1 cm") represents the estimated uncertainty in the measurement, so that the actual width most likely lies between 8.7 and 8.9 cm. The **percent uncertainty** is the ratio of the uncertainty to the measured value, multiplied by 100. For example, if the measurement is 8.8 and the uncertainty about 0.1 cm, the percent uncertainty is

$$\frac{0.1}{8.8} \times 100\% \approx 1\%,$$

where \approx means "is approximately equal to."

Often the uncertainty in a measured value is not specified explicitly. In such cases, scientists follow a general rule that

uncertainty in a numerical value is assumed to be *one or a few units* in the last digit specified.

For example, if a length is given as 5.6 cm, the uncertainty is assumed to be about 0.1 cm or 0.2 cm, or possibly 0.3 cm. It is important in this case that you do not write 5.60 cm, for this implies an uncertainty on the order of 0.01 or 0.02 cm; it assumes that the length is probably between about 5.58 cm and 5.62 cm, when actually you believe it is between about 5.4 and 5.8 cm.

Significant Figures

The number of reliably known digits in a number is called the number of **significant figures**. Thus there are four significant figures in the number 23.21 cm and two in the number 0.062 cm (the zeros in the latter are merely place holders that show where the decimal point goes). The number of significant figures may not always be clear. Take, for example, the number 80. Are there one or two significant figures? We need words here: If we say it is *roughly* 80 km between two cities, there is only one significant figure (the 8) since the zero is merely a place holder. If there is no suggestion that the 80 is a rough approximation, then we can often assume (as we will in this book) that it has two significant figures: so it is 80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to within ± 0.1 or ± 0.2 km, then we need to write 80.0 km (three significant figures).

When specifying numerical results, you should avoid the temptation to keep more digits in the final answer than is justified: see boldface statement above. For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of multiplication would be 76.84 cm². But this answer can not be accurate to the implied 0.01 cm^2 uncertainty. Why? Because (using the outer limits of the assumed uncertainty for each measurement) the result could be between $11.2 \text{ cm} \times 6.7 \text{ cm} = 75.04 \text{ cm}^2$ and $11.4 \text{ cm} \times 6.9 \text{ cm} = 78.66 \text{ cm}^2$. At best, we can quote the answer as 77 cm^2 , which implies an uncertainty of about 1 or 2 cm². The other two digits (in the number 76.84 cm²) must be dropped (rounded off) because they are not significant. As a rough general **significant figures rule**,

the final result of a multiplication or division should have no more digits than the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. Thus the result 76.84 cm^2 needs to be rounded off to 77 cm^2 .

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm²; (b) 14.63 cm²; (c) 14.6 cm²; (d) 15 cm².

PROBLEM SOLVING

the least significant input value

Significant figures rule:

When *adding* or *subtracting* numbers, the final result should contain no more decimal places than the number with the fewest decimal places. For example, the result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly 36 + 8.2 = 44, not 44.2.

Be careful not to confuse significant figures with the number of decimal places. Significant figures are related to the expected uncertainty in any measured quantity.

EXERCISE B For each of the following numbers, state the number of significant figures and the number of decimal places: (*a*) 1.23; (*b*) 0.123; (*c*) 0.0123.

CAUTION

Calculators err with significant figures

significant figures in the final result. But

keep extra digits during the calculation

PROBLEM SOLVING *Report only the proper number of*

FIGURE 1–3 These two calculators show the wrong number of significant figures. In (a), 2.0 was divided by 3.0. The correct final result should be stated as 0.67. In (b), 2.5 was multiplied by 3.2. The correct result is 8.0.

CONCEPTUAL EXAMPLE 1–1 Significant figures. Using a protractor (Fig. 1–4), you measure an angle to be 30° . (*a*) How many significant figures should you quote in this measurement? (*b*) Use a calculator to find the cosine of the angle you measured.

RESPONSE (*a*) If you look at a protractor, you will see that the precision with which you can measure an angle is about one degree (certainly not 0.1°). So you can quote two significant figures, namely 30° (not 30.0°). (*b*) If you enter cos 30° in your calculator, you will get a number like 0.866025403. But the angle you entered is known only to two significant figures, so its cosine is correctly given by 0.87; you must round your answer to two significant figures.

NOTE Trigonometric functions, like cosine, are reviewed in Appendix A.

EXERCISE C Do 0.00324 and 0.00056 have the same number of significant figures?

Scientific Notation

We commonly write numbers in "powers of ten," or "scientific" notation—for instance 36,900 as 3.69×10^4 , or 0.0021 as 2.1×10^{-3} . One advantage of scientific notation is that it allows the number of significant figures to be clearly expressed. For example, it is not clear whether 36,900 has three, four, or five significant figures. With powers of ten notation the ambiguity can be avoided: if the number is known to three significant figures, we write 3.69×10^4 , but if it is known to four, we write 3.690×10^4 .

[†]Be careful also about other digital read-outs. If a digital bathroom scale shows 85.6, do not assume the uncertainty is ± 0.1 or ± 0.2 ; the scale was likely manufactured with an accuracy of perhaps only 1% or so: that is, ± 1 or ± 2 . For digital scientific instruments, also be careful: the instruction manual should state the accuracy.

EXERCISE D Write each of the following in scientific notation and state the number of significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures

The significant figures rule is only approximate, and in some cases may underestimate the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92:

$$\frac{97}{92} = 1.05 \approx 1.1.$$

Both 97 and 92 have two significant figures, so the rule says to give the answer as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of ± 1 if no other uncertainty is stated. Both 92 ± 1 and 97 ± 1 imply an uncertainty of about 1% ($1/92 \approx 0.01 = 1\%$). But the final result to two significant figures is 1.1, with an implied uncertainty of ± 0.1 , which is an uncertainty of $0.1/1.1 \approx 0.1 \approx 10\%$. In this case it is better to give the answer as 1.05 (which is three significant figures). Why? Because 1.05 implies an uncertainty of ± 0.01 which is $0.01/1.05 \approx 0.01 \approx 1\%$, just like the uncertainty in the original numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncertainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations

Much of physics involves approximations, often because we do not have the means to solve a problem precisely. For example, we may choose to ignore air resistance or friction in doing a Problem even though they are present in the real world, and then our calculation is only an estimate or approximation. In doing Problems, we should be aware of what approximations we are making, and be aware that the precision of our answer may not be nearly as good as the number of significant figures given in the result.

Accuracy versus Precision

There is a technical difference between "precision" and "accuracy." **Precision** in a strict sense refers to the repeatability of the measurement using a given instrument. For example, if you measure the width of a board many times, getting results like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks as best as possible each time), you could say the measurements give a *precision* a bit better than 0.1 cm. **Accuracy** refers to how close a measurement is to the true value. For example, if the ruler shown in Fig. 1–2 was manufactured with a 2% error, the accuracy of its measurement of the board's width (about 8.8 cm) would be about 2% of 8.8 cm or about ± 0.2 cm. Estimated uncertainty is meant to take both accuracy and precision into account.

1–4 Units, Standards, and the SI System

The measurement of any quantity is made relative to a particular standard or **unit**, and this unit must be specified along with the numerical value of the quantity. For example, we can measure length in British units such as inches, feet, or miles, or in the metric system in centimeters, meters, or kilometers. To specify that the length of a particular object is 18.6 is insufficient. The unit *must* be given, because 18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we need to define a **standard** which defines exactly how long one meter or one second is. It is important that standards be chosen that are readily reproducible so that anyone needing to make a very accurate measurement can refer to the standard in the laboratory and communicate results with other scientists.

Length

The first truly international standard was the **meter** (abbreviated m) established as the standard of **length** by the French Academy of Sciences in the 1790s. The standard meter was originally chosen to be one ten-millionth of the distance from the Earth's equator to either pole,[†] and a platinum rod to represent this length was made. (One meter is, very roughly, the distance from the tip of your nose to the tip of your finger, with arm and hand stretched out horizontally.) In 1889, the meter was defined more precisely as the distance between two finely engraved marks on a particular bar of platinum–iridium alloy. In 1960, to provide greater precision and reproducibility, the meter was redefined as 1,650,763.73 wavelengths of a particular orange light emitted by the gas krypton-86.

In 1983 the meter was again redefined, this time in terms of the speed of light (whose best measured value in terms of the older definition of the meter was 299,792,458 m/s, with an uncertainty of 1 m/s). The new definition reads: "The meter is the length of path traveled by light in vacuum during a time interval of 1/299,792,458 of a second." The new definition of the meter has the effect of giving the speed of light the exact value of 299,792,458 m/s. [The newer definitions provided greater precision than the 2 marks on the old platinum bar.]

British units of length (inch, foot, mile) are now defined in terms of the meter. The **inch** (in.) is defined as exactly 2.54 centimeters (cm; 1 cm = 0.01 m). One **foot** is exactly 12 in., and 1 **mile** is 5280 ft. Other conversion factors are given in the Table on the inside of the front cover of this book. Table 1–1 below presents some typical lengths, from very small to very large, rounded off to the nearest power of 10. (We call this rounded off value the **order of magnitude**.) See also Fig. 1–5. (Note that the abbreviation for inches (in.) is the only one with a period, to distinguish it from the word "in".) [The **nautical mile** = 6076 ft = 1852 km is used by ships on the open sea and was originally defined as 1/60 of a degree latitude on Earth's surface. A speed of 1 **knot** is 1 nautical mile per hour.]

Time

The standard unit of **time** is the **second** (s). For many years, the second was defined as 1/86,400 of a mean solar day (24 h/day × 60 min/h × 60 s/min = 86,400 s/day). The standard second can be defined more precisely in terms of the frequency of radiation emitted by cesium atoms when they pass between two particular states. [Specifically, one second is the time required for 9,192,631,770 periods of this radiation.] This number was chosen to keep "one second" the same as in the old definition.] There are, by definition, 60 s in one minute (min) and 60 minutes in one hour (h). Table 1–2 presents a range of time intervals, rounded off to the nearest power of 10.

New definition of the meter

FIGURE 1–5 Some lengths: (a) viruses (about 10⁻⁷ m long) attacking a cell; (b) Mt. Everest's height is on the order of 10⁴ m (8850 m, to be precise).

[†]Modern measurements of the Earth's circumference reveal that the intended length is off by about one-fiftieth of 1%. Not bad!

TABLE 1-1	Some Typical Lengths or Distances	
	(order of magnitude)	

Length (or Distance)	Meters (approximate)
Neutron or proton (diameter)	$10^{-15} { m m}$
Atom (diameter)	$10^{-10}{ m m}$
Virus [see Fig. 1–5a]	10^{-7} m
Sheet of paper (thickness)	10^{-4} m
Finger width	10^{-2} m
Football field length	10 ² m
Height of Mt. Everest [see Fig. 1–5b]	10 ⁴ m
Earth diameter	10^7 m
Earth to Sun	10^{11} m
Earth to nearest star	10^{16} m
Earth to nearest galaxy	10^{22} m
Earth to farthest galaxy visible	10^{26} m

TABLE 1–2 Some Typical Time Intervals (order of magnitude)

Time Interval	Seconds (approximate)
Lifetime of very unstable subatomic particle	10^{-23} s
Lifetime of radioactive elements	10^{-22} s to 10^{28} s
Lifetime of muon	10^{-6} s
Time between human heartbeats	10^0 s (= 1 s)
One day	10^5 s
One year	3×10^7 s
Human life span	2×10^9 s
Length of recorded history	10^{11} s
Humans on Earth	10^{14} s
Life on Earth	10^{17} s
Age of Universe	$4 imes 10^{17}$ s

TABLE 1–3 Some Masses

Object	Kilograms (approximate)
Electron	$10^{-30}{ m kg}$
Proton, neutron	$10^{-27}{ m kg}$
DNA molecule	$10^{-17}\mathrm{kg}$
Bacterium	$10^{-15}\mathrm{kg}$
Mosquito	10^{-5} kg
Plum	10^{-1} kg
Human	10^2 kg
Ship	10 ⁸ kg
Earth	$6 imes 10^{24}$ kg
Sun	$2 imes 10^{30}$ kg
Galaxy	10^{41} kg

TABLE	1–4 Metric (SI)	Prefixes
Prefix	Abbreviation	Value
yotta	Y	10 ²⁴
zetta	Z	10^{21}
exa	Е	10^{18}
peta	Р	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	Μ	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	с	10^{-2}
milli	m	10^{-3}
micro^{\dagger}	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	а	10^{-18}
zepto	Z	10^{-21}
yocto	у	10^{-24}

 $^{\dagger}\mu$ is the Greek letter "mu."

Mass

The standard unit of **mass** is the **kilogram** (kg). The standard mass has been, since 1889, a particular platinum-iridium cylinder, kept at the International Bureau of Weights and Measures near Paris, France, whose mass is defined as exactly 1 kg. A range of masses is presented in Table 1–3. [For practical purposes, a 1 kg mass weighs about 2.2 pounds on Earth.]

1 metric **ton** is 1000 kg. In the British system of units, 1 ton is 2000 pounds. When dealing with atoms and molecules, we usually use the **unified atomic mass unit** (u or amu). In terms of the kilogram,

 $1 \text{ u} = 1.6605 \times 10^{-27} \text{ kg}.$

(Precise values of this and other numbers are given inside the front cover.) The **density** of a uniform object is its mass divided by its volume, commonly expressed in kg/m^3 .

Unit Prefixes

In the metric system, the larger and smaller units are defined in multiples of 10 from the standard unit, and this makes calculation particularly easy. Thus 1 kilometer (km) is 1000 m, 1 centimeter is $\frac{1}{100}$ m, 1 millimeter (mm) is $\frac{1}{1000}$ m or $\frac{1}{10}$ cm, and so on. The *prefixes* "centi-," "kilo-," and others are listed in Table 1–4 and can be applied not only to units of length but to units of volume, mass, or any other unit. For example, a centiliter (cL) is $\frac{1}{100}$ liter (L), and a kilogram (kg) is 1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels (individual "picture elements").

In common usage, $1 \mu m (= 10^{-6} m)$ is called 1 micron.

Systems of Units

When dealing with the laws and equations of physics it is very important to use a consistent set of units. Several systems of units have been in use over the years. Today the most important is the **Système International** (French for International System), which is abbreviated SI. In SI units, the standard of length is the meter, the standard for time is the second, and the standard for mass is the kilogram. This system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the **cgs system**, in which the centimeter, gram, and second are the standard units of length, mass, and time, as abbreviated in the title. The **British engineering system** (although more used in the U.S. than Britain) has as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book, although we often define the cgs and British units when a new quantity is introduced. In the SI, there have traditionally been seven *base* quantities, each defined in terms of a standard; seven is the smallest number of base quantities consistent with a full description of the physical world. See Table 1–5. All other quantities[†] can be defined in terms of seven base quantities; see the Table inside the front cover which lists many quantities and their units in terms of base units.

*A New SI

As always in science, new ideas and approaches can produce better precision and closer correspondence with the real world. Even for units and standards.

International organizations on units have proposed further changes that should make standards more readily available and reproducible. To cite one example, the standard kilogram (see above) has been found to have changed slightly in mass (contamination is one cause).

The new redefinition of SI standards follows the method already used for the meter as being related to the defined value of the speed of light, as we mentioned on page 7 under "Length". For example, the charge on the electron, *e*, instead of being a measured value, becomes *defined* as a certain value (its current value), and the unit of electric charge (the coulomb) follows from that. All units then become based on

[†]Some exceptions are for angle (radians—see Chapter 10), solid angle (steradian), and sound level (bel or decibel, Chapter 16).

*Some Sections of this book, such as this subsection, may be considered *optional* at the discretion of the instructor and they are marked with an asterisk (*). See the Preface for more details.

defined fundamental constants like *e* and the speed of light. Seven is still the number of basic standards. The new definitions maintain the values of the traditional definitions: the "new" meter is the same length as the "old" meter. The new definitions do not change our understanding of what length, time, or mass means.

For us, using this book, the difference between the new SI and the traditional SI is highly technical and does not affect the physics we study. We include the traditional SI because there is some good physics in explaining it. [The Table of Fundamental Constants inside the front cover would look slightly different using the new SI. The value of the charge *e* on the electron, for example, is *defined*, and so would have no uncertainty attached to it; instead, our Table inside the front cover includes the traditional SI measured uncertainty (updated) of $\pm 98 \times 10^{-29}$ C.]

1–5 Converting Units

Any quantity we measure, such as a length, a speed, or an electric current, consists of a number *and* a unit. Often we are given a quantity in one set of units, but we want it expressed in another set of units. For example, suppose we measure that a shelf is 21.5 inches wide, and we want to express this in centimeters. We must use a **conversion factor**, which in this case is, *by definition*, exactly

$$1 \text{ in.} = 2.54 \text{ cm}$$

or, written another way,

$$1 = 2.54 \text{ cm/in.}$$

Since multiplying by the number one does not change anything, the width of our shelf, in cm, is

21.5 inches =
$$(21.5 \text{ in}) \times (2.54 \frac{\text{cm}}{\text{in}}) = 54.6 \text{ cm}$$

Note how the units (inches in this case) cancelled out (thin red lines). A Table containing many unit conversions is found inside the front cover of this book. Let's consider some Examples.

EXAMPLE 1–2 The 8000-m peaks. There are only 14 peaks whose summits are over 8000 m above sea level. They are the highest peaks in the world (Fig. 1–6 and Table 1–6) and are referred to as "eight-thousanders." What is the elevation, in feet, of an elevation of 8000 m?

APPROACH We need to convert meters to feet, and we can start with the conversion factor 1 in. = 2.54 cm, which is exact. That is, 1 in. = 2.5400 cm to any number of significant figures, because it is *defined* to be.

SOLUTION One foot is defined to be 12 in., so we can write

$$1 \text{ ft} = (12 \text{ ins}) \left(2.54 \frac{\text{cm}}{\text{ins}} \right) = 30.48 \text{ cm} = 0.3048 \text{ m},$$

which is exact. Note how the units cancel (colored slashes). We can rewrite this equation to find the number of feet in 1 meter:

$$1 \text{ m} = \frac{1 \text{ ft}}{0.3048} = 3.28084 \text{ ft}$$

(We could carry the result to 6 significant figures because 0.3048 is exact, $0.304800\cdots$). We multiply this equation by 8000.0 (to have five significant figures):

$$8000.0 \text{ m} = (8000.0 \text{ m}) \left(3.28084 \frac{\text{ft}}{\text{m}} \right) = 26,247 \text{ ft}$$

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the unit conversions all in one line:

$$8000.0 \text{ m} = (8000.0 \text{ m}) \left(\frac{100 \text{ cm}}{1 \text{ m}} \right) \left(\frac{1 \text{ in}}{2.54 \text{ cm}} \right) \left(\frac{1 \text{ ft}}{12 \text{ in}} \right) = 26,247 \text{ ft}.$$

The key is to multiply conversion factors, each equal to one (= 1.0000), and to make sure which units cancel.

TABLE 1–5 Traditional SI Base Quantities

Quantity	Unit	Unit Abbreviation
Length	meter	m
Time	second	S
Mass	kilogram	kg
Electric	-	_
current	ampere	А
Temperature	kelvin	K
Amount of		
substance	mole	mol
Luminous		
intensity	candela	cd

FIGURE 1–6 The world's second highest peak, K2, whose summit is considered the most difficult of the "8000-ers." Example 1–2.

TABLE 1–6 The 8000-m Peaks		
Peak	Height (m)	
Mt. Everest	8850	
K2	8611	
Kangchenjunga	8586	
Lhotse	8516	
Makalu	8462	
Cho Oyu	8201	
Dhaulagiri	8167	
Manaslu	8156	
Nanga Parbat	8125	
Annapurna	8091	
Gasherbrum I	8068	
Broad Peak	8047	
Gasherbrum II	8035	
Shisha Pangma	8013	