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xvi  PREFACE

 

Preface
New Stuff!
 1. MisConceptual Questions, 10 or 15 at the end of each chapter. The multiple-

choice answers include common misconceptions as well as correct responses. 
Pedagogically, asking students to think, to consider the options, is more  
effective than just telling them what is valid and what is wrong. (These are in 
addition to the one at the start of each chapter.

 2. Digital is all around us. Yet that word is not always used carefully. In this 
new edition we have 20 new pages describing the basics from the ground 
up. Binary numbers, bits and bytes, are introduced in Chapter 23 along with 
analog-to-digital conversion (ADC), and vice versa, including digital audio  
and how video screens work. Also information compression, sampling rate, bit 
depth, pixel addressing, digital transmission and, in later chapters, information  
storage (RAM, DRAM, flash), digital cameras and their sensors (CCD, CMOS).

 3. Gravitational Assist (Slingshot) to accelerate spacecraft (Chapter 8).
 4. Magnetic field of a single moving charge, rarely treated (and if it is, maybe 

not well), and it shows the need for relativity theory.
 5. Seeing yourself in a magnifying mirror (concave), angular magnification and 

blurriness with a paradox. Also convex (rearview) mirrors (Chapter 32).
 6. Pedagogical clarification on defining potential energy, and energy itself 

(Chapter 8), and on hundreds of other topics.
 7. The Moon rises an hour later each day (Chapter 6), its phases, periods, and diagram.
 8. Efficiency of lightbulbs (Chapter 34).
 9. Idealization vs. reality emphasized—such as PV diagrams (Chapter 19) as an 

idealized approximation.
 10. Many new Problems ('  500) plus new Questions as well as the 500 or so 

MisConceptual Questions (point 1 above).
 11. Many new worked-out Examples.
 12. More math steps included in derivations and Examples.
 13. State of a system and state variables clarified (Chapter 17).
 14. Contemporary physics: Gravitational waves, LIGO and Virgo, Higgs, WIMPS, 

OLEDS and other semiconductor physics, nuclear fusion updates, neutrino-less 
double beta decay.

 15. New SI units (Chapter 1, Chapter 21, Tables).
 16. Boiling temperature of water vs. elevation (Chapter 18).
 17. Modern physics in earlier classical Chapters (sometimes in Problems): Light-years,  

observable universe (Chapter 1); optical tweezers (Chapter 4); uranium  
enrichment (Chapter 5); black holes and curved space, white dwarfs (Chapter 6); 
crystal structure (Chapter 7); Yukawa potential, Lennard-Jones potential (Chap-
ter 8); neutrons, nuclear reactors, moderator, nuclear collisions, radioactive decay, 
neutron star collapse (Chapter 9); galaxy redshift (Chapter 16); gas diffusion of 
uranium (Chapter 18); quarks (Chapter 21); liquid-drop model of nucleus, Gei-
ger counter, Van de Graaff (Chapter 23); transistors (Chapters 23, 29); isotopes, 
cyclotron (Chapter 27); MOSFET (Chapter 29); semiconductor (camera sensor), 
photon (Chapter 33); line spectra, X-ray crystallography (Chapter 35).

 18. Second law of thermodynamics and heat energy reorganized (Chapter 20).
 19. Symmetry emphasized throughout.
 20. Uranium enrichment, % needed in reactors, bombs (Chapters 5, 42).
 21. Mass excess, mass defect (Chapter 41).
 22. The mole, more careful definition (Chapter 17).
 23. Liquid-gas ambiguity above critical temperature (Chapter 18).
 24. Measurement affects quantity measured, new emphasis.
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 25. New Applications:
•	 Ocean	Tides	(Chapter	6)
•	 Anticyclonic	weather	(Chapter	11)
•	 Jump	starting	a	car	safely	(Chapter	26)
•	 Light	bulb	efficiency	(Chapter	34)
•	 Specialty	microscopes	and	contrast	(Chapter	35)
•	 Forces	on	Muscles	and	Joints	(Chapter	12)
•	 Doppler ultrasound imaging (Chapter 16)
•	 Lake	level	change	when	rock	thrown	from	boat	(Chapter	13)
•	 Skier	speed	on	snow	vs.	flying	through	the	air	(Chapter	5)
•	 Inductive	charging	(Chapter	29)
•	 Human body internal heat transfer is convection (blood) (Chapter 19)
•	 Blood	pressure	measurement	(Chapter	13)
•	 Sports	(lots)
•	 Voltage divider (Chapter 26, Problems)
•	 Flat	screen	TV	(Chapters	23,	34,	40)
•	 Carbon	footprint	and	climate	(Chapter	20)
•	 Electrocardiogram (Chapter 23)
•	 Wireless	from	the	Moon	unimaginable	(Chapter	31)
•	 Why snorkels are short (Chapter 17 Problem)
•	 Electric	cars	(Chapter	25)
•	 Digital (Chapters 23, 29, 33, 40) includes (in addition to details in point 2 

above) quantization error, digital error correction, noise, bit error rate, digi-
tal TV data stream, refresh rate, active matrix, thin film transistors, digital 
memory, bit-line, reading and writing of memory cells (MOSFET), floating 
gate, volatile and nonvolatile memory, Bayer, JPEG, ASCII code, and more.

Seeing the World through Eyes that Know Physics
I was motivated to write a textbook different from others which typically present 
physics as a sequence of facts, like a catalog. Instead of beginning formally and  
dogmatically, I aim to begin each topic with everyday observations and experiences  
the students can relate to: start with specifics, the real world, and then go to the 
great generalizations and the more formal aspects of the physics, showing why we 
believe what we believe. This approach reflects how science is actually practiced.

The aim is to give students a thorough understanding of the basic concepts 
of physics in all its aspects, from mechanics to modern physics. Also important 
is to show students how useful physics is in their own everyday lives and in their 
future professions by means of interesting applications to biology, medicine, 
engineering, architecture, and more. 

Much effort has gone into approaches for the practical techniques of solving prob-
lems: worked-out Examples, Problem Solving sections, and Problem Solving Strategies.

Chapter 1 is not a throwaway. It is fundamental to physics to realize that ev-
ery measurement has an uncertainty, and how significant figures are used. Being 
able to make rapid estimates is a powerful tool useful for every student, and used 
throughout the book starting in Chapter 1 (you can estimate the Earth’s radius!). 

Mathematics can be an obstacle to students. I have aimed at including all 
steps in a derivation. Important mathematical tools, such as addition of vectors 
and vector product, are incorporated in the text where first needed, so they come 
with a context rather than in a forbidding introductory Chapter. Appendices 
contain a basic math review, derivatives and integrals, plus some more advanced 
topics including numerical integration, gravitational field of spherical mass  
distribution, Maxwell’s equations in differential form, and a Table of selected 
nuclear isotopes (carefully updated, as are the Periodic Table and the Funda-
mental Constants found inside the back and front covers).

Some instructors may find this book contains more material than can be 
covered in their courses. The text offers great flexibility. Sections marked with 
a star * may be considered optional. These contain slightly more advanced 

Versions of this Book
Complete version: 44 Chapters 
including 9 Chapters of modern 
physics.

Classic version: 37 Chapters, 
35 on classical physics, plus one 
each on relativity and quantum 
theory.

3 Volume version: Available 
separately or packaged together  

Volume 1: Chapters 1–20 on 
 mechanics, including fluids,  
oscillations, waves, plus heat  
and thermodynamics.

Volume 2: Chapters 21–35 on 
electricity and magnetism, plus 
light and optics.

Volume 3: Chapters 36–44 on  
modern physics: relativity,  
quantum theory, atomic physics,  
condensed matter, nuclear physics,  
elementary particles,  
cosmology and astrophysics.
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physics material, or material not usually covered in typical courses, or interest-
ing applications; they contain no material needed in later Chapters (except 
perhaps in later optional Sections). For a brief course, all optional material 
could be dropped as well as significant parts of Chapters 13, 16, 26, 30, and 35, 
and selected parts of Chapters 9, 12, 19, 20, 33. Topics not covered in class can 
be a valuable resource for outside study by students. Indeed, this text can serve 
as a useful reference for years because of its wide range of coverage.

Thanks
Many physics professors provided input or direct feedback on every aspect of this 
textbook. They are listed below, and I owe each a debt of gratitude.
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I owe special thanks to Prof. Bob Davis for much valuable input, and especially 
for working out all the Problems and producing the Solutions Manual for all 
Problems, as well as for providing the answers to odd-numbered Problems at the 
back of the book. Many thanks also to J. Erik Hendrickson who collaborated with 
Bob Davis on the solutions, and to the team they managed (Michael Ottinger, 
John Kinard, David Jones, Kristi Hatch, Lisa Will).

I am especially grateful to Profs. Lorraine Allen, Kathryn Dimiduk, Michael 
Strauss, Cindy Schwarz, Robert Coakley, Robert Pelcovitz, Mark Hollabaugh, 
Charles Hibbard, and Michael Winokur, who helped root out errors and offered 
significant improvements and clarifications.

For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophysics, 
I was fortunate to receive generous input from some of the top experts in the 
field, to whom I owe a debt of gratitude: Saul Perlmutter, George Smoot, Richard 
Muller, Alex Filippenko, Paul Richards, Gabriel Orebi Gann, James Siegrist, and 
William Holzapfel (UC Berkeley), Andreí Linde (Stanford U.), Lyman Page 
(Princeton), Edward Wright (UCLA), Michael Strauss (University of Oklahoma), 
and Bob Jacobsen (UC Berkeley).

I also wish to thank many others at the University of California, Berkeley, 
Physics Department for helpful discussions, and for hospitality. Thanks also to 
Prof. Tito Arecchi at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Pearson Education with whom 
I worked on this project, especially Jeanne Zalesky and Paul Corey, and the 
perspicacious editors Margy Kuntz and Andrea Giancoli.

The final responsibility for all errors lies with me. I welcome comments, 
corrections, and suggestions as soon as possible to benefit students for the next 
reprint.

D.G.
email: jeanne.zalesky@pearson.com 
paper mail: Jeanne Zalesky
 Pearson Education
 501 Boylston Street
 Boston, MA 020116 

About the Author
Doug Giancoli obtained his BA in physics (summa cum laude) from UC Berkeley,  
his MS in physics at MIT, and his PhD in elementary particle physics back at UC 
Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley’s Virus Lab  
developing skills in molecular biology and biophysics. 

His mentors include Nobel winners Emilio Segrè, Barry Barish, and 
Donald Glaser. 

He has taught a wide range of undergraduate courses, traditional as well as 
innovative ones, and works to improve his textbooks meticulously, seeking ways 
to provide a better understanding of physics for students.

Doug loves the outdoors, especially climbing peaks. He says climbing peaks 
is like learning physics: it takes effort and the rewards are great.
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Students Advice
HOW TO STUDY
 1. Read the Chapter. Learn new vocabulary and notation. Respond to questions and  

exercises as they occur. Follow carefully the steps of worked-out Examples and 
derivations. Avoid time looking at a screen. Paper is better than pixels when it 
comes to learning and thinking.

 2. Attend all class meetings. Listen. Take notes. Ask questions (everyone wants 
to, but maybe you will have the courage). You will get more out of class if you 
read the Chapter first.

 3. Read the Chapter again, paying attention to details. Follow derivations and 
worked-out Examples. Absorb their logic. Answer Exercises and as many of 
the end-of-Chapter Questions as you can, and all MisConceptual Questions.

 4. Solve at least 10 to 20 end-of-Chapter Problems, especially those assigned. In 
doing Problems you may find out what you learned and what you didn’t. Discuss  
them with other students. Problem solving is one of the great learning tools. 
Don’ t just look for a formula : it might be the wrong one. 

NOTES ON THE FORMAT AND PROBLEM SOLVING
 1. Sections marked with a star (*) may be considered optional or advanced. They can 

be omitted without interrupting the main flow of topics. No later material depends 
on them except possibly later starred Sections. They may be fun to read, though.

 2. The customary conventions are used: symbols for quantities (such as m for 
mass) are italicized, whereas units (such as m for meter) are not italicized. 
Symbols for vectors are shown in boldface with a small arrow above: F5.

 3. Few equations are valid in all situations. Where practical, the range of validity  
of important equations are stated in square brackets next to the equation. 
The equations that represent the great laws of physics are displayed with a 
tan background, as are a few other indispensable equations.

 4. At the end of each Chapter is a set of Questions you should try to answer. 
Attempt all the multiple-choice MisConceptual Questions, which are inten-
dend to get common misconceptions “out on the table” by including them 
as responses (temptations) along with correct answers. Most important are 
Problems which are ranked as Level I, II, or III, according to estimated dif-
ficulty. Level I Problems are easiest, Level II are standard Problems, and 
Level III are “challenge problems.” These ranked Problems are arranged by 
Section, but Problems for a given Section may depend on earlier material 
too. There follows a group of General Problems, not arranged by Section or 
ranked. Problems that relate to optional Sections are starred (*). Answers to 
odd-numbered Problems are given at the end of the book. 

 5. Being able to solve Problems is a crucial part of learning physics, and provides  
a powerful means for understanding the concepts and principles. This 
book contains many aids to problem solving: (a) worked-out Examples,  
including an Approach and a Solution, which should be studied as an integral  
part of the text; (b) some of the worked-out Examples are Estimation 
Examples,which show how rough or approximate results can be obtained even 
if the given data are sparse (see Section 1-6); (c) Problem Solving Strategies  
placed throughout the text to suggest a step-by-step approach to problem 
solving for a particular topic : but the basics remain the same; most of these 
“Strategies” are followed by an Example that is solved by explicitly following 
the suggested steps; (d) special problem-solving Sections; (e) “Problem Solv-
ing” marginal notes which refer to hints within the text for solving Problems; 
(f) Exercises within the text that you should work out immediately, and then 
check your response against the answer given at the bottom of the last page 
of that Chapter; (g) the Problems themselves at the end of each Chapter.

 6. Conceptual Examples pose a question which hopefully starts you to think 
about a response. Give yourself a little time to come up with your own 
response before reading the Response given.

 7. Math review, plus additional topics, are found in Appendices. Useful data,  
conversion factors, and math formulas are found inside the front and back covers.

xx  PREFACE
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1

Introduction,  
Measurement, Estimating

C
h

a p t e

r

1
Chapter-Opening QuestiOns—guess now!
1. How many cm3 are in 1.0 m3?

(a) 10.  (b) 100.  (c) 1000.  (d) 10,000.  (e) 100,000.  (f) 1,000,000.
2. Suppose you wanted to actually measure the radius of the Earth, at least 
roughly, rather than taking other people’s word for what it is. Which response 
below  describes the best approach?

(a) Use an extremely long measuring tape.
(b) It is only possible by flying high enough to see the actual curvature of the Earth.
(c) Use a standard measuring tape, a stepladder, and a large smooth lake.
(d) Use a laser and a mirror on the Moon or on a satellite.
(e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question : sometimes two. Try to answer right away. Don’t worry about 
getting the right answer now : the idea is to get your preconceived notions out on the table. If they 
are misconceptions, we expect them to be cleared up as you read the Chapter. You will get another 
chance at the Question later in the Chapter when the appropriate material has been covered. These 
Chapter-Opening Questions will also help you see the power and usefulness of physics.]

Image of the Earth from out in space.  
The sky appears black because 

there are so few molecules to 
reflect light. (Why the sky 

appears blue to us on 
Earth has to do with 

scattering of light by 
molecules of the  

atmosphere, as 
discussed in 
Chapter 34.) 
Note the storm 
off the coast 
of Mexico.
Important 
physics is 
covered in 
this first 
Chapter, 
including 
measurement 
uncertainty 
and how to 

make an 
estimate. For 

example, we can 
determine the 

radius of the Earth 
without going out in 

space, but just by being 
near a lake or bay.

COntents
1–1 How Science Works

1–2 Models, Theories, and Laws

1–3 Measurement and  Uncertainty;  
Significant Figures

1–4 Units, Standards, and  
the SI System

1–5 Converting Units

1–6 Order of Magnitude:  
Rapid Estimating

1–7 Dimensions and  Dimensional 
Analysis

*
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2 CHAPTER 1 Introduction, Measurement, Estimating

P hysics is the most basic of the sciences. It deals with the behavior and structure  
of matter. The field of physics is usually divided into classical physics which 
includes motion, fluids, heat, sound, light, electricity and magnetism; and 

 modern physics which includes the topics of relativity, atomic structure, condensed 
matter, nuclear physics, elementary particles, and cosmology and astrophysics. We 
will cover all these topics in this book, beginning with motion (or mechanics, as it 
is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is wonderfully useful for anyone making a 
career in science or technology. Engineers, for example, must know how to 
calculate the forces within a structure to design it so that it remains standing 
(Fig. 1 9 1a). Indeed, in Chapter 12 we will see a worked-out Example of how a 
simple physics  calculation : or even intuition based on understanding the physics 
of forces : would have saved hundreds of lives (Fig. 1 9 1b). We will see many 
examples in this book of how physics is useful in many fields, and in everyday life.

1–1 How Science Works
There is a real physical world out there. We could just walk through it, not thinking 
much about it. Or, we can instead examine it carefully. That is what scientists do. 
The aim of science is the search for order in our observations of the physical 
world so as to provide a deeper picture or description of this world around us. 
Sometimes we just want to understand how things work.

Some people seem to think that science is a mechanical process of collecting 
facts and devising theories. But it is not so simple. Science is a creative activity, 
and in many ways resembles other creative activities of the human mind.

One important aspect of science is observation of events (which great writers 
and artists also do), and includes the design and carrying out of experiments. But 
observation and experiment require imagination, because scientists can never 
include everything in a description of what they observe. In other words, scientists 
must make judgments about what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384 9 322 b.c.) and  Galileo 
(1564 9 1642), interpreted motion along a horizontal surface. Aristotle noted that objects 
given an initial push along the ground (or on a level tabletop) always slow down and 
stop. Consequently, Aristotle argued, the natural state of an object is to be at rest. 
Galileo, in his reexamination of horizontal motion in the 1600s, had the idea that 
friction is a kind of force like a push or a pull; and he imagined that if friction could be 
eliminated, an object given an initial push along a horizontal surface would continue 
to move indefinitely without stopping. He concluded that for an object to be in motion 
was just as natural as for it to be at rest. By inventing a new approach, Galileo founded 
our modern view of motion (Chapters 2, 3, and 4), and he did so with a leap of the 
imagination. Galileo made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of 
the scientific process. The other side is the invention or creation of theories to 
explain and order the observations. Theories are never derived directly from 
observations. Observations may help inspire a theory, and theories are accepted 
or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of humans. For example, 
the idea that matter is made up of atoms (the atomic theory) was not arrived 
at by direct observation of atoms. Rather, the idea sprang from creative minds. 
The theory of relativity, the electromagnetic theory of light, and Newton’s law of 
universal gravitation were likewise the result of human imagination. 

The great theories of science may be compared, as creative achievements, 
with great works of art or literature. But how does science differ from these other 
creative activities? One important difference is that science requires testing of its 
ideas or theories to see if their predictions are borne out by experiment.

But theories are not “proved” by testing. First of all, no  measuring instrument is 
perfect, so exact confirmation is not possible. Furthermore, it is not possible to test a 
theory in every single possible circumstance. Hence a  theory cannot be absolutely verified.  

C a u T I o N
Science is not static.  

It changes and develops

(a)

(b)

FIgurE 1 – 1  (a) This bridge over 
the River Tiber in Rome was built 
2000 years ago and still stands. 
(b) The Hartford Civic Center 
collapsed in 1978, just two years 
after it was built.

GIAN_PSE5_CH01_001-019_ca.indd   2 01/07/20   16:17



 

SECTION 1–3 Measurement and Uncertainty; Significant Figures 3

Indeed, the history of science tells us that long-held theories can often be replaced  
by new ones.

1–2 Models, Theories, and Laws
When scientists are trying to understand a particular aspect of the physical world, 
they often make use of a model. A model, in the scientist’s sense, is a kind of 
analogy or mental image of the phenomena in terms of something we are familiar 
with. One example is the wave model of light. We cannot see waves of light as we 
can water waves. But it is valuable to think of light as made up of waves because 
experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual  picture :  
something to hold on to : when we cannot see what actually is happening in the real 
world. Models often give us a deeper understanding: the analogy to a known system 
(for instance, water waves in the above example) can suggest new experiments to 
perform and can provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. 
Usually a model is relatively simple and provides a structural similarity to the 
phenomena being studied. A theory is broader, more detailed, and can give 
 quantitatively testable predictions, often with great precision. 

It is important not to confuse a model or a theory with the real world and 
the phenomena themselves. Theories are descriptions of the physical world, and 
they are made up by us. Theories are  invented : usually by very smart people.

Scientists give the title law to certain concise but general statements about 
how nature behaves (that energy is conserved, for example). Sometimes the state-
ment takes the form of a relationship or equation between quantities (such as 
Newton’s second law,  F = ma).

To be called a law, a statement must be found experimentally valid over a  
wide range of observed phenomena. For less general statements, the term  principle 
is often used (such as Archimedes’ principle). We use “theory” to describe a more 
general picture of a large group of phenomena.

Scientific laws are different from political laws, which are prescriptive: they tell 
us how we ought to behave. Scientific laws are descriptive: they do not say how 
nature should behave, but rather are meant to describe how nature does behave. 
As with theories, laws cannot be tested in the infinite variety of cases possible. So  
we cannot be sure that any law is absolutely true. We use the term “law” when its 
validity has been tested over a wide range of situations, and when any limitations 
and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were 
true. But they are obliged to keep an open mind in case new information should 
alter the validity of any given law or theory. In other words, laws of physics, or 
the “laws of nature”, represent our descriptions of reality and are not inalterable 
facts that last forever. Laws are not lying there in nature, waiting to be discov-
ered. We humans, the brightest humans, invent the laws using observations and 
intuition as a basis. And we hope our laws provide a good description of nature, 
and at a minimum give us a reliable approximation of how nature really behaves.

1–3  Measurement and Uncertainty; 
Significant Figures

In the quest to understand the world around us, scientists seek to find relationships  
among physical quantities that can be measured.

Uncertainty
Reliable measurements are an important part of physics. But no measurement 
is absolutely precise. There is an uncertainty associated with every measure-
ment. Among the most important sources of uncertainty, other than blunders, 
are the  limited accuracy of every measuring instrument and the inability to read 

C a u T I o N
Theories and laws  
are NOT discovered.  
They are invented
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4 CHAPTER 1 Introduction, Measurement, Estimating

an instrument (such as a ruler) beyond some fraction of the smallest division 
shown. For example, if you were to use a centimeter ruler to measure the width 
of a board (Fig. 1 9 2), the result could be claimed to be precise to about 0.1 cm 
(1 mm), the smallest division on the ruler, although half of this value might be a 
valid claim as well. The reason is that it is difficult for the observer to estimate 
(or interpolate) between the smallest divisions. Furthermore, the ruler itself may 
not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the 
 estimated uncertainty in the measurement. For example, the width of a board 
might be written as  8.8 { 0.1 cm.  The {0.1 cm (“plus or minus 0.1 cm”) 
represents the estimated uncertainty in the measurement, so that the actual 
width most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio 
of the uncertainty to the measured value, multiplied by 100. For example, if the 
measurement is 8.8 and the uncertainty about 0.1 cm, the percent uncertainty is

0.1
8.8

* 100%  L   1%,

where L  means “is approximately equal to.”
Often the uncertainty in a measured value is not specified explicitly. In such 

cases, scientists follow a general rule that

uncertainty in a numerical value is assumed to be one or a few units in the 
last digit specified.

For example, if a length is given as 5.6 cm, the uncertainty is assumed to be about 
0.1 cm or 0.2 cm, or possibly 0.3 cm. It is important in this case that you do not 
write 5.60 cm, for this implies an uncertainty on the order of 0.01 or 0.02 cm; it 
assumes that the length is probably between about 5.58 cm and 5.62 cm, when 
actually you believe it is between about 5.4 and 5.8 cm.

Significant Figures
The number of reliably known digits in a number is called the number of 
 significant figures. Thus there are four significant figures in the number 23.21 cm 
and two in the number 0.062 cm (the zeros in the latter are merely place holders 
that show where the decimal point goes). The number of significant figures may 
not always be clear. Take, for example, the number 80. Are there one or two 
significant figures? We need words here: If we say it is roughly 80 km between 
two cities, there is only one significant figure (the 8) since the zero is merely a 
place holder. If there is no suggestion that the 80 is a rough approximation, then 
we can often assume (as we will in this book) that it has two significant figures: 
so it is 80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to 
within {0.1 or {0.2 km, then we need to write 80.0 km (three significant figures).

When specifying numerical results, you should avoid the temptation to 
keep more digits in the final answer than is justified: see boldface statement 
above. For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the 
result of multi plication would be 76.84 cm2. But this answer can not be accurate 
to the implied 0.01 cm2 uncertainty. Why? Because (using the outer limits of 
the assumed uncertainty for each measurement) the result could be between  
11.2 cm * 6.7 cm = 75.04 cm2  and  11.4 cm * 6.9 cm = 78.66 cm2.  At best, we 
can quote the answer as 77 cm2, which implies an uncertainty of about 1 or 2 cm2.  
The other two digits (in the number 76.84 cm2) must be dropped (rounded off) 
because they are not significant. As a rough general significant figures rule,

the final  result of a multiplication or division should have no more digits than 
the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. 
Thus the result 76.84 cm2 needs to be rounded off to 77 cm2.

ExErcisE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm2;   
(b) 14.63 cm2;  (c) 14.6 cm2;  (d) 15 cm2.

P r o b l E M  S o lv I N g
Significant figures rule:  

Number of significant figures in 
final result should be same as  

the least significant input value

FIgurE 1 – 2  Measuring the width 
of a board with a centimeter ruler. 
The uncertainty is about {1 mm. 
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SECTION 1–3 Measurement and Uncertainty; Significant Figures 5

†Be careful also about other digital read-outs. If a digital bathroom scale shows 85.6, do not assume the 
uncertainty is {0.1 or {0.2; the scale was likely manufactured with an accuracy of perhaps only 1% or 
so: that is, {1 or {2. For digital scientific instruments, also be careful: the instruction manual should 
state the accuracy.

concEptuAl ExAMplE 1 – 1 significant figures. Using a protractor 
(Fig.  1 9 4), you measure an angle to be 30°. (a) How many significant figures 
should you quote in this  measurement? (b) Use a calculator to find the cosine 
of the angle you measured.

rEsponsE (a) If you look at a protractor, you will see that the precision with 
which you can measure an angle is about one degree (certainly not 0.1°). So you 
can quote two significant figures, namely 30° (not 30.0°). (b) If you enter cos 30° 
in your calculator, you will get a  number like 0.866025403. But the angle you 
entered is known only to two significant figures, so its cosine is correctly given 
by 0.87; you must round your answer to two significant figures.

notE Trigonometric functions, like cosine, are reviewed in Appendix A.

FIgurE 1 – 4  Example 1 9 1.  
A protractor used to measure an 
angle.

ExErcisE c Do 0.00324 and 0.00056 have the same number of significant figures?

Scientific Notation
We commonly write numbers in “powers of ten,” or “scientific” notation : for instance 
36,900 as  3.69 * 104,  or 0.0021 as  2.1 * 10-3.  One advantage of scientific notation 
is that it allows the number of significant figures to be clearly expressed. For example, 
it is not clear whether 36,900 has three, four, or five significant figures. With powers 
of ten notation the ambiguity can be avoided: if the number is known to three signif-
icant figures, we write  3.69 * 104,  but if it is known to four, we write  3.690 * 104.

When adding or subtracting numbers, the final result should contain no more 
decimal places than the number with the fewest decimal places. For example, the 
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly  36 + 8.2 = 44,  not 44.2.

Be careful not to confuse significant figures with the number of decimal places. 
Significant figures are related to the expected uncertainty in any measured quantity.

ExErcisE B For each of the following numbers, state the number of significant figures  
and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may 
not be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not 
0.666666666 as calculators give (Fig. 1 9 3a). Digits should not be quoted in a result 
unless they are truly significant figures. However, to obtain the most accurate 
result, you should normally keep one or more extra significant figures throughout a 
calculation, and round off only in the final result. (With a calculator, you can keep 
all its digits in intermediate results.) Calculators can also give too few significant 
figures. For example, when you multiply  2.5 * 3.2,  a calculator may give the 
answer as simply 8. See Fig. 1 9 3b. But the answer is  accurate to two significant 
figures, so the proper answer is 8.0.†

P r o b l E M  S o lv I N g
Significant figures when  
adding and subtracting

C a u T I o N
Calculators err with significant figures

P r o b l E M  S o lv I N g
Report only the proper number of 
significant figures in the final result. But  
keep extra digits during the calculation

FIgurE 1 – 3  These two calculators 
show the wrong number of 
significant figures. In (a), 2.0 was 
divided by 3.0. The correct final 
result should be stated as 0.67. In (b), 
2.5 was multiplied by 3.2. The correct 
result is 8.0. 

(a) (b)
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6 CHAPTER 1 Introduction, Measurement, Estimating

ExErcisE D Write each of the following in scientific notation and state the number of 
 significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures
The significant figures rule is only approximate, and in some cases may under-
estimate the accuracy (or uncertainty) of the answer. Suppose for example we 
divide 97 by 92:

97
92

= 1.05  L   1.1.

Both 97 and 92 have two significant figures, so the rule says to give the 
answer as  1.1. Yet the numbers 97 and 92 both imply an uncertainty of {1 
if no other uncertainty is stated. Both  92 { 1  and  97 { 1  imply an uncer-
tainty of about 1%  (1>92 L 0.01 = 1%).  But the final result to two significant 
figures is  1.1, with an implied uncertainty of {0.1, which is an uncertainty of  
0.1>1.1 L 0.1 L 10%.  In this case it is better to give the answer as 1.05 (which 
is three significant figures). Why? Because 1.05 implies an uncertainty of {0.01 
which is  0.01>1.05 L 0.01 L 1%,  just like the uncertainty in the original numbers 
92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncer-
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations
Much of physics involves approximations, often because we do not have the  
means to solve a problem precisely. For example, we may choose to ignore air 
resistance or friction in doing a Problem even though they are present in the real 
world, and then our calculation is only an estimate or approximation. In doing 
Problems, we should be aware of what approximations we are making, and be 
aware that the precision of our answer may not be nearly as good as the number 
of significant figures given in the result.

Accuracy versus Precision
There is a technical difference between “precision” and “accuracy.” precision in 
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting results 
like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks 
as best as possible each time), you could say the measurements give a precision 
a bit better than 0.1 cm.  accuracy refers to how close a measurement is to the 
true value. For example, if the ruler shown in Fig. 1 9 2 was manufactured with a 
2% error, the accuracy of its measurement of the board’s width (about 8.8 cm) 
would be about 2% of 8.8 cm or about {0.2 cm. Estimated uncertainty is meant 
to take both accuracy and precision into account.

1–4  Units, Standards, and the SI System
The measurement of any quantity is made relative to a particular standard or unit, 
and this unit must be specified along with the numerical value of the quantity. 
For example, we can measure length in British units such as inches, feet, or miles, 
or in the metric system in centimeters, meters, or kilometers. To specify that the 
length of a particular object is 18.6 is insufficient. The unit must be given, because 
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, 
we need to define a standard which defines exactly how long one meter or one 
second is. It is important that standards be chosen that are readily reproducible 
so that  anyone needing to make a very accurate measurement can refer to the 
standard in the laboratory and communicate results with other scientists.
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SECTION 1–4 Units, Standards, and the SI System 7

tABlE 1 – 1  some typical lengths or Distances  
(order of magnitude)

Length (or Distance) Meters (approximate)

Neutron or proton (diameter) 10-15 m
Atom (diameter) 10-10 m
Virus [see Fig. 1 9 5a] 10-7 m
Sheet of paper (thickness) 10-4 m
Finger width 10-2 m
Football field length 102 m
Height of Mt. Everest [see Fig. 1 9 5b] 104 m
Earth diameter 107 m
Earth to Sun 1011 m
Earth to nearest star 1016 m
Earth to nearest galaxy 1022 m
Earth to farthest galaxy visible 1026 m

†Modern measurements of the Earth’s circumference reveal that the intended length is off by about 
one-fiftieth of 1%. Not bad!

Length
The first truly international standard was the meter (abbreviated m) established as the 
standard of length by the French Academy of Sciences in the 1790s. The standard meter 
was originally chosen to be one ten-millionth of the distance from the Earth’s equator 
to either pole,† and a platinum rod to represent this length was made. (One meter is, 
very roughly, the distance from the tip of your nose to the tip of your finger, with arm 
and hand stretched out horizontally.) In 1889, the meter was defined more precisely as 
the distance between two finely engraved marks on a particular bar of platinum 9 iridium 
alloy. In 1960, to provide greater precision and reproducibility, the meter was redefined 
as 1,650,763.73 wavelengths of a particular orange light emitted by the gas krypton-86.

In 1983 the meter was again redefined, this time in terms of the speed of light 
(whose best measured value in terms of the older definition of the meter was 
299,792,458 m>s, with an uncertainty of 1 m>s). The new definition reads: “The 
meter is the length of path traveled by light in vacuum during a time interval of  
1>299,792,458 of a second.” The new definition of the meter has the effect of 
giving the speed of light the exact value of 299,792,458 m>s. [The newer definitions 
provided greater precision than the 2 marks on the old platinum bar.]

British units of length (inch, foot, mile) are now defined in terms of the meter. 
The inch (in.) is defined as exactly 2.54 centimeters (cm;  1 cm = 0.01 m). One 
foot is exactly 12 in., and 1 mile is 5280 ft. Other conversion factors are given in 
the Table on the inside of the front cover of this book. Table 1 9 1 below presents 
some typical lengths, from very small to very large, rounded off to the nearest 
power of 10. (We call this rounded off value the order of magnitude.) See also Fig. 
1 9 5. (Note that the abbreviation for inches (in.) is the only one with a period, to 
distinguish it from the word “in”.) [The nautical mile = 6076 ft = 1852 km is used 
by ships on the open sea and was originally defined as 1>60 of a degree latitude 
on Earth’s surface. A speed of 1 knot is 1 nautical mile per hour.] 

Time
The standard unit of time is the second (s). For many years, the second was defined as  
1>86,400 of a mean solar day  (24 h>day * 60 min>h * 60 s>min = 86,400 s>day).  
The standard second can be defined more precisely in terms of the frequency of 
radiation emitted by cesium atoms when they pass between two particular states. 
 [Specifically, one second is the time required for 9,192,631,770 periods of this radiation. 
This number was chosen to keep “one second” the same as in the old definition.] 
There are, by definition, 60 s in one minute (min) and 60 minutes in one hour (h). 
Table 1 9 2 presents a range of time intervals, rounded off to the nearest power of 10.

New definition of the meter

FIgurE 1 – 5  Some lengths: (a) viruses 
(about 10-7 m long) attacking a cell;  
(b) Mt. Everest’s height is on the order  
of 104 m (8850 m, to be precise). 

(a)

(b)

tABlE 1 – 2  some typical time intervals  
(order of magnitude)

time interval seconds (approximate)

Lifetime of very unstable  
subatomic particle 10-23 s

Lifetime of radioactive elements 10-22 s to 1028 s
Lifetime of muon 10-6  s

Time between human heartbeats 100 s ( = 1 s)
One day 105 s
One year 3 * 107 s

Human life span 2 * 109 s
Length of recorded history 1011 s
Humans on Earth 1014 s
Life on Earth 1017 s

Age of Universe 4 * 1017 s
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8 CHAPTER 1

†Some exceptions are for angle (radians : see Chapter 10), solid angle (steradian), and sound level 
(bel or decibel, Chapter 16). 

*Some Sections of this book, such as this subsection, may be considered optional at the discretion of 
the instructor and they are marked with an asterisk (*). See the Preface for more details.

tABlE 1 – 3 some Masses

Object
Kilograms  

(approximate)

Electron 10-30 kg
Proton, neutron 10-27 kg
DNA molecule 10-17 kg
Bacterium 10-15 kg
Mosquito 10-5 kg
Plum 10-1 kg
Human 102 kg
Ship 108 kg
Earth 6 * 1024 kg
Sun 2 * 1030 kg
Galaxy 1041 kg

tABlE 1 – 4 Metric (si) prefixes

prefix abbreviation Value

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro† m 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

†m is the Greek letter “mu.”

Mass
The standard unit of mass is the kilogram (kg). The standard mass has been, since 
1889, a particular platinum 9 iridium cylinder, kept at the International Bureau of 
Weights and Measures near Paris, France, whose mass is defined as exactly 1 kg.  
A range of masses is presented in Table 1 9 3. [For practical purposes, a 1 kg mass 
weighs about 2.2 pounds on Earth.]

1 metric ton is 1000 kg. In the British system of units, 1 ton is 2000 pounds.
When dealing with atoms and molecules, we usually use the unified atomic 

mass unit (u or amu). In terms of the kilogram,
1 u = 1.6605 * 10-27 kg.

(Precise values of this and other numbers are given inside the front cover.)  
The density of a uniform object is its mass divided by its volume, commonly 
expressed in kg>m3. 

Unit Prefixes
In the metric system, the larger and smaller units are defined in multiples of 10 
from the standard unit, and this makes calculation particularly easy. Thus 1 kilo- 
me ter (km) is 1000 m, 1 centimeter is 1

100 m, 1 millimeter (mm) is 1
1000 m or  

1
10 cm, and so on. The prefixes “centi-,” “kilo-,” and others are listed in Table 1 9 4 
and can be applied not only to units of length but to units of volume, mass, or 
any other unit. For example, a centiliter (cL) is 1

100 liter (L), and a kilogram (kg) 
is 1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels 
(individual “picture elements”).

In common usage,  1 mm (= 10 - 6 m)  is called 1 micron.

Systems of Units
When dealing with the laws and equations of physics it is very important to use  
a consistent set of units. Several systems of units have been in use over the years. 
Today the most important is the système international (French for International 
System), which is abbreviated SI. In SI units, the standard of length is the meter, 
the standard for time is the second, and the standard for mass is the kilogram. 
This  system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and 
second are the standard units of length, mass, and time, as abbreviated in the title. 
The British engineering system (although more used in the U.S. than Britain) has 
as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book, although we often define the 
cgs and British units when a new quantity is introduced. In the SI, there have 
traditionally been seven base quantities, each defined in terms of a standard; 
seven is the smallest number of base quantities consistent with a full description 
of the physical world. See Table 1 9 5. All other quantities† can be defined in terms 
of seven base quantities; see the Table inside the front cover which lists many 
quantities and their units in terms of base units.

A New SI
As always in science, new ideas and approaches can produce better precision and 
closer correspondence with the real world. Even for units and standards.

International organizations on units have proposed further changes that 
should make standards more readily available and reproducible. To cite one 
example, the standard kilogram (see above) has been found to have changed 
slightly in mass ( contamination is one cause).

The new redefinition of SI standards follows the method already used for the 
meter as being related to the defined value of the speed of light, as we mentioned on 
page 7 under “Length”.  For example, the charge on the electron, e, instead of being a 
measured value, becomes defined as a certain value (its current value), and the unit 
of electric charge (the coulomb) follows from that. All units then become based on 

P r o b l E M  S o lv I N g
Always use a consistent set of units

*
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tABlE 1 – 5  
traditional si Base Quantities

Quantity unit
unit 

abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric  

current ampere A
Temperature kelvin K
Amount of  

substance mole mol
Luminous  

intensity candela cd

ExAMplE 1 – 2 the 8000-m peaks. There are only 14 peaks whose summits 
are over 8000 m above sea level. They are the highest peaks in the world 
(Fig.  1 9 6 and Table 1 9 6) and are referred to as “eight-thousanders.” What is 
the elevation, in feet, of an elevation of 8000 m?

ApproAch We need to convert meters to feet, and we can start with the 
conversion factor  1 in. = 2.54 cm,  which is exact. That is,  1 in. = 2.5400 cm  to 
any number of significant figures, because it is defined to be.

solution One foot is defined to be 12 in., so we can write

1 ft =  (12  in. ) ¢2.54 
cm
 in. 

≤ = 30.48 cm = 0.3048 m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this 
equation to find the number of feet in 1 meter:

1 m =
1 ft

0.3048
= 3.28084 ft.

(We could carry the result to 6 significant figures because 0.3048 is exact,  
0.304800 g.) We multiply this equation by 8000.0 (to have five significant figures):

8000.0 m =  (8000.0  m ) ¢3.28084 
ft

 m 
≤ = 26,247 ft.

An elevation of 8000 m is 26,247 ft above sea level.

notE We could have done the unit conversions all in one line:

8000.0 m =  (8000.0  m ) ¢ 100  cm 
1  m 

≤ ¢ 1  in. 
2.54  cm 

≤ ¢ 1 ft
12  in. 

≤ = 26,247 ft.

The key is to multiply conversion factors, each equal to one  (  = 1.0000),  and 
to make sure which units cancel.

P h y S I C S  a P P l I E d
The world’s tallest peaks

FIgurE 1 – 6  The world’s second 
highest peak, K2, whose summit is 
considered the most difficult of the 
“8000-ers.” Example 1 9 2.

defined fundamental constants like e and the speed of light. Seven is still the number 
of basic standards. The new definitions maintain the values of the traditional defini-
tions: the “new” meter is the same length as the “old” meter. The new definitions do 
not change our understanding of what length, time, or mass means.

For us, using this book, the difference between the new SI and the traditional 
SI is highly technical and does not affect the physics we study. We include the 
traditional SI because there is some good physics in explaining it. [The Table of 
Fundamental Constants inside the front cover would look slightly different using 
the new SI. The value of the charge e on the electron, for example, is defined, and so 
would have no uncertainty attached to it; instead, our Table inside the front cover 
includes the traditional SI measured uncertainty (updated) of {98 * 10-29 C.]

1–5 Converting Units
Any quantity we measure, such as a length, a speed, or an electric current, consists 
of a number and a unit. Often we are given a quantity in one set of units, but we 
want it expressed in another set of units. For example, suppose we measure that 
a shelf is 21.5 inches wide, and we want to express this in centimeters. We must 
use a conversion factor, which in this case is, by definition, exactly

1 in. = 2.54 cm

or, written another way,

1 = 2.54 cm>in.

Since multiplying by the number one does not change anything, the width of our 
shelf, in cm, is

21.5 inches =  (21.5  in. ) * a2.54 
cm
 in. 

b = 54.6 cm.

Note how the units (inches in this case) cancelled out (thin red lines). A Table 
 containing many unit conversions is found inside the front cover of this book. 
Let’s consider some Examples.

tABlE 1 – 6 the 8000-m peaks

peak height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013
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